LeetCode 509. 斐波那契数列
题目链接:509. 斐波那契数 - 力扣(LeetCode)
每道题都要考虑dp五步:
1)确定dp数组下标与值的关系:对于该题就是第n位的和
2)确定递推公式:题目已经给出
3)确定初始值:题目已给出
4)确定遍历的数:题目告诉了dp[0],dp[1],所以我们要从第2位一直到第n位
5)带入验证一下
代码:
#python
class Solution:
def fib(self, n: int) -> int:
if n <= 1: //确定特殊情况
return n
dp = [0 for _ in range(n + 1)] //初始化数组
dp[0], dp[1] = 0, 1 //初始化数值
for i in range(2, n + 1): //确定范围
dp[i] = dp[i - 1] + dp[i - 2] //递推公式
return dp[n] //返回答案
/java
class Solution {
public int fib(int n) {
if (n <= 0) {
return 0;
}
int[] F = new int[n + 1];
F[0] = 0; // 使用索引0为数组的第一个元素赋值
F[1] = 1; // 使用索引1为数组的第二个元素赋值
for(int i = 2; i <= n; i++){
F[i] = F[i - 1] + F[i - 2];
}
return F[n];
}
}
LeetCode 70. 爬楼梯
题目链接:70. 爬楼梯 - 力扣(LeetCode)
每道题都要考虑dp五步:
1)确定dp数组下标与值的关系:对于第n阶可以实现的方法数
2)确定递推公式:要么是前两阶跳一下,要么前一阶跳一下
3)确定初始值:从示例1可以确定一下dp[0],dp[1]=1,1
4)确定遍历的数:题目告诉了dp[0],dp[1],所以我们要从第2位一直到第n位
5)带入验证一下
代码:
#python
class Solution:
def climbStairs(self, n: int) -> int:
if n < 2: //注意特殊情况
return n
dp = [0 for i in range(n + 1)]
dp[0], dp[1] = 1, 1
for i in range(2, n + 1):
dp[i] = dp[i - 1] + dp[i - 2] //前两种情况跳一下
return dp[n]
/java
class Solution {
public int climbStairs(int n) {
if(n < 3){
return n;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i < n + 1; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
LeetCode 746. 使用最小花费爬楼梯
题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)
每道题都要考虑dp五步:
1)确定dp数组下标与值的关系:对于第n阶所需最小花费
2)确定递推公式:要么是前两阶加花费,要么前一阶加花费,选两者的较小值
3)确定初始值:从题目意思可以确定一下dp[0],dp[1]=0,0
4)确定遍历的数:题目告诉了dp[0],dp[1],所以我们要从第2位一直到第n位
5)带入验证一下
代码:
#python
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
# if len(cost) == 0: //特殊情况可以不给了,下面全部包含了
# return 0
# if len(cost) == 1:
# return cost[0]
# if len(cost) == 2:
# return min(cost[0], cost[1])
dp = [0 for i in range(len(cost) + 1)]
dp[0], dp[1] = 0, 0
for i in range(2, len(cost) + 1):
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
return dp[len(cost)]
/java
class Solution {
public int minCostClimbingStairs(int[] cost) {
if(cost.length == 2){
return Math.min(cost[0], cost[1]);
}
int[] dp = new int[cost.length + 1];
dp[0] = 0;
dp[1] = 0;
for(int i = 2; i < cost.length + 1; i++){
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.length];
}
}