几个不常用但比较有用的Python包

有些python包不太常用,但是很实用,能够提升效率,提供更多实用功能。下面是收集的一些包。

pandas-profiling:

用于快速生成数据的概要分析报告

import pandas as pd
import pandas_profiling

data = pd.read_csv('your_data.csv')
profile = data.profile_report()
profile.to_file('output.html')

pycountry:
处理国家和地区的相关信息

import pycountry

country = pycountry.countries.get(name='China')
print(country.alpha_2)

sympy:符号数学计算

from sympy import symbols, diff

x = symbols('x')
f = x**2
df = diff(f, x)
print(df)

itertools

主要是提供了各种迭代的操作,如累加、笛卡尔积、连接多个列表等功能,只需要一句话。

#累加
>>> import itertools
>>> x = itertools.accumulate(range(10))
>>> print(list(x))
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

#不重复的所有组合
>>> x = itertools.combinations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]

 dask:

并行计算和大数据处理

import dask.array as da

x = da.random.normal(size=(10000, 10000), chunks=(1000, 1000))
mean = x.mean()

plotly
Python画图的包有很多,如matplotlib,seaborn,plotly等等。Plotly可交互,能够放大、缩小或者是选择图表。

import plotly.express as px
df = px.data.gapminder().query("country=='Canada'")
fig = px.line(df, x="year", y="lifeExp", title='Life expectancy in Canada')
fig.show()

dateutil

这个包中的parse方法,可以根据不同格式的时间输入很智能的给出标准化的时间输出。

from dateutil.parser import parse
In: parse('12nd,July,2019')
Out: datetime.datetime(2019, 7, 12, 0, 0)

In: parse('2018-07-20')
Out: datetime.datetime(2018, 7, 20, 0, 0)

In: parse('20180720')
Out: datetime.datetime(2018, 7, 20, 0, 0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流着口水看上帝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值