问题来源:
招行2018-05-15机试题
问题描述:
问题分析:
很容易知道:dp[0] = 0;
dp[i] = min{dp[i-1]-1,dp[i+1]+1,dp[i/2]+1(若i为偶数)};
而这道题目比较恶心的地方在于并不能单方向(i-1=>i 或者 i+1=>i )的进行递推;也不好确定dp矩阵的长度
好在我们可以确定的是1,2,4,8,,,这一类连续的2^n,最快的方式就是连跳n+1步;
这样的话,要求第x个位置上的最优值,只需要将dp数组长度Len定在大于其的最小的2^n上即可。有了首尾2个确定值,就可以求出来中间所有值了;
预设值:dp[0] = 0;
dp[i] = +∞;
方法一:
所以比较直接的方法就是遍历数组len遍;每次都对数组里的每一位数字取min{dp[i-1]-1,dp[i+1]+1,dp[i/2]+1(若i为偶数)}既可以得到最优的数组;
方法二:
使用动态遍历的方式就是dp[i] = min{dp[i-1]-1,dp[i+1]+1,dp[i/2]+1(若i为偶数)}进行递归调用;
但是需要注意的问题是需要避免5调用6;6调用5这样的死循环;将所有的数组预设为最大值(+∞,即不可能的状态)可以解决这个问题;(但是实际上感觉还是方法一比较说得通)
代码实现:
import java.util.Scanner;
public class ZhaoHang02 {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
//有几行数据
int x = scan.nextInt();
int maxIndex = (int) Math.pow(2, Math.ceil(Math.log(x)/Math.log(2)));
//System.out.println(maxIndex);
int[] dp = new int[maxIndex+1];
dp[0] = 0;
/*
* 方法一
*
double temp = 0;
for(int i = 1;i<maxIndex+1;i++) {
temp = Math.log(i)/Math.log(2);
if(Math.floor(temp) == temp)
dp[i] = (int) (Math.log(i)/Math.log(2) + 1);
else
dp[i] = Integer.MAX_VALUE - 100;
}
for(int j = 0;j<maxIndex;j++)
for(int i = 1;i<maxIndex;i++) {
if(dp[i-1] + 1 < dp[i])
dp[i] = dp[i-1] + 1;
if(dp[i+1] +1 < dp[i])
dp[i] = dp[i+1] + 1;
if(i%2==0 && dp[i/2] +1 < dp[i])
dp[i] = dp[i/2] + 1;
}
*/
/**
* 1、除0位置外全部初始化为最大值(-100(防止+1后变为最小数))
* 2、计算每个位置上的最大值 = min(dp[i-1]+1,dp[i+1]-1,dp[i/2]+1(若i为偶数))
*/
for(int i = 1;i<maxIndex+1;i++)
dp[i] = Integer.MAX_VALUE - 100;
for(int i = 1;i<maxIndex/2+2;i++)
dp[i] = optimum(dp,i);
System.out.println(x+":"+dp[x]);
}
public static int optimum(int[] dp,int i) {
if(i == 0) {dp[0] = 0; return 0;}
double temp = Math.log(i)/Math.log(2);
if(Math.floor(temp) == temp) {
dp[i] = (int)(temp + 1);
return (int)(temp + 1);
}
else {
//min(dp[i-1]+1,dp[i+1]-1,dp[i/2]+1(若i为偶数))
int op = dp[i-1] + 1;
if(op > optimum(dp,i+1) + 1)
op = optimum(dp,i+1) + 1;
if(i%2==0 && op > dp[i/2] + 1)
op = dp[i/2] + 1;
dp[i] = op;
return op;
}
}
}