拓扑排序详解(包含算法原理图解、算法实现过程详解、算法例题变式全面讲解等)

文章介绍了有向无环图(DAG)的概念,包括入度、出度和队列的定义。接着详细阐述了拓扑排序的原理,通过一个示例展示了拓扑排序的过程,并提供了使用邻接表和广度优先搜索(BFS)实现拓扑排序的算法代码。最后,文章指出拓扑排序的应用和相关问题的解决思路。

前置知识

有向无环图

在图论中,如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。
如图所示。
在这里插入图片描述

入度

对于一个有向图,若x点指向y点,则称x点为y点的入度。

出度

对于一个有向图,若x点指向y点,则称y点为x点的出度。

队列

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。

我们可以用双指针标记一下,通过front指针与rear指针,对队头和队尾进行标记,然后只允许在front、rear指针的位置进行增删改查,那么这样便实现了对数组的受限。这是一种运用数组的数据结构对队列的模拟。初学者建议先用这种方式熟悉队列。

具体操作:

/*
    通常将front赋值为0,rear赋值为-1
    方便后续进队、出队以及取队首元素
 */
int a[100], front=0, rear=-1;

// 进队
a[++rear] = 10;

// 出队
front++

// 取队首元素
a[front]

// 取队尾元素
a[rear]

// 判断是否为空队
if(front > rear)
    cout << "该队列为空队";

不过,到了后期,为了节省时间,我们可以直接用c++自带的STL容器来完成操作。

具体操作如下:

// 导入queue包
#include<queue>

// 申明一个queue对象
// 填入你想装填的数据类型
queue<int> qu;

// 进队
int a = 10;
qu.push(a);

// 出队,无返回值
qu.pop();

// 取队首元素
int front = qu.front();

概述

今天我们来学拓扑排序
什么是拓扑排序呢?
百度百科这样说:

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

什么意思呢?

俗话说的好:

实践是真理的试金石

那么,就让我们举一个例子吧!
如图,1、2、3、4、5几个点组成了一个图。


那么,1,2,4,3,6,5或1,2,4,3,5,6就是它的拓扑序

但是,这是如何实现的呢?请看下面的算法原理

算法原理

下面我将使用图文结合的方式演示拓扑排序的算法原理。

还是上面那张图。

首先,将入度为0的入队。上图中是点1。

在这里插入图片描述
然后,用宽搜遍历队列
对每个点的每轮遍历步骤如下:

  • 将这个点出队,并加入拓扑数组中
  • 遍历这个点的所有出度
  • 将其出度点的入度数量减少一
  • 如果其出度点入度为0,入队

那么,一轮下来,就变成这样子了:
在这里插入图片描述
以此类推。

遍历到点3时,是这样的:
在这里插入图片描述
……

然后,就没有然后了,一切结束。
在这里插入图片描述
如图所示,其拓扑序为1,2,4,3,5,6。当然,也可以是1,2,4,3,6,5。

算法实现

这可以变为以下的问题。我称为拓扑排序元问题

给你一个有向无环图,请输出它的拓扑序(m条有向边,n个结点)

建图(邻接表存图)

首先,我们要建图
这里采用邻接表建图。

邻接表是什么?
以点为一个结点,用其邻接点建表

怎么这么朦胧?好吧,偷懒了,自己查百度……

看到这里,就默认你会了建图操作。那么,放一下代码。
(此处设定为m条有向边)

for(int i=1;i<=m;i++)
{
	int x,y;
	scanf("%d%d",&x,&y);
	rd[y]++;
	e[x].push_back(y);
}

rd[y]++ 是什么意思?请往后看。

入队

上面提到,首先,将入度为0的点入队。
那么,我们就遍历一遍n个点,当遇到入度为0的点时,入队。

如何判断入度为0?

这时前面的 rd数组 就有用了。它是用于统计入度数的。
而前面为何是rd[y]++?
因为是 x指向y,因此y入度数加1

入队操作

非常简单!这里为了省力,用了STL容器
只需要**q.push(i)**一下就可以了

代码

	queue<int>q;
	for(int i=1;i<=n;i++)
	{
		if(rd[i]==0) q.push(i);
		//入度为0,入队 
	}

核心部分

这部分的过程,我在前面是这样说的:

用宽搜遍历队列。
那就宽搜。

宽搜

没遍历到一个点,就将其弹出,并压入拓扑数组。

对每个点的操作

我在前面这样说:
对每个点的每轮遍历步骤如下:
1.将这个点出队,并加入拓扑数组中
2.遍历这个点的所有出度
3.将其出度点的入度数量减少一
4.如果其出度点入度为0,入队

那就照着做嘛。
很简单,实在看不懂代码中有注释。

代码

	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		topu.push_back(x);//推入拓扑数组 
		for(auto y:e[x])
		{
			rd[y]--;//删掉一条边 
			if(rd[y]==0)//入度为0 
			{
				q.push(y);//入队 
			}
		}
	}

好,大功告成!

算法元代码

上面没看懂的话,看下面的代码,含有注释。

#include<bits/stdc++.h>
using namespace std;
const int NN=5005;
int n,m,rd[NN];
//rd[i]表示i点的入度数 
vector<int>e[NN],topu;
//e作为邻接表存储用,topu储存拓扑序 
void tuopu()
{
	queue<int>q;
	for(int i=1;i<=n;i++)
	{
		if(rd[i]==0) q.push(i);
		//入度为0,入队 
	}
	while(!q.empty())
	{
		int x=q.front();
		q.pop();
		topu.push_back(x);//推入拓扑数组 
		for(auto y:e[x])
		{
			rd[y]--;//删掉一条边 
			if(rd[y]==0)//入度为0 
			{
				q.push(y);//入队 
			}
		}
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		rd[y]++;//x指向y,因此y入度数加1 
		e[x].push_back(y);//加边 
	}
	tuopu();
	for(auto x:topu)
	{
		printf("%d ",x);//输出拓扑序 
	}
} 

总结

拓扑排序就是这回事:
首先,将入度为0的点入队。
然后,用宽搜遍历队列。
在此之后,对每个点进行如下操作:
1.将这个点出队,并加入拓扑数组中
2.遍历这个点的所有出度
3.将其出度点的入度数量减少一
4.如果其出度点入度为0,入队

下一篇文章,我将会详细讲解拓扑排序相关例题。
好,期待三连~~

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lyh不会打代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值