(9)Elasticsearch-suggest详解

参考:Elasticsearch suggest    注:本文使用的版本是7.9.X,与原文有一些差异。

目录

概述

(1)Term Suggester

option数组

(2)Phrase Suggester

(3)Completion Suggester

(4)global-suggest

其他


概述

现代的搜索引擎,一般会具备"Suggest As You Type"功能,即在用户输入搜索的过程中,进行自动补全或者纠错。 通过协助用户输入更精准的关键词,提高后续全文搜索阶段文档匹配的程度。例如在Google上输入部分关键词,甚至输入拼写错误的关键词时,它依然能够提示出用户想要输入的内容:

输入会自动补全:

当输入有误,开始提示相似的词:

 

以上类似功能,在elasticsearch中,采用suggester api实现。suggester基本运作原理是:将输入的文本分解为token,然后在索引的字典中查找相似的term并且返回。根据使用场景不同,elasticsearch中涉及了 4种类别的suggester。分别是:

  • Term Suggester
  • Phrase Suggester
  • Completion Suggester
  • Context Suggester

以下实验,基于elasticsearch7.9.0,单机环境中完成,所有的结果都是7.9.0单机环境下运行出来的结果。

(1)Term Suggester

提供一种基于单个词项的拼写纠错方法。
准备一个叫做blogs的索引,配置一个text字段。

PUT /blogs/
{
  "mappings": {
      "properties": {
        "body": {
          "type": "text"
      }
    }
  }
}

通过bulk api写入几条文档

POST _bulk/?refresh=true
{ "index" : { "_index" : "blogs"} }
{ "body": "Lucene is cool"}
{ "index" : { "_index" : "blogs"} }
{ "body": "Elasticsearch builds on top of lucene"}
{ "index" : { "_index" : "blogs" } }
{ "body": "Elasticsearch rocks"}
{ "index" : { "_index" : "blogs" } }
{ "body": "Elastic is the company behind ELK stack"}
{ "index" : { "_index" : "blogs" } }
{ "body": "elk rocks"}
{ "index" : { "_index" : "blogs" } }
{  "body": "elasticsearch is rock solid"}

此时blogs索引里已经有一些文档了,可以进行下一步的探索。为帮助理解,我们先看看哪些term会存在于词典里。
将输入的文本分析一下:

POST _analyze
{
  "text": [
    "Lucene is cool",
    "Elasticsearch builds on top of lucene",
    "Elasticsearch rocks",
    "Elastic is the company behind ELK stack",
    "elk rocks",
    "elasticsearch is rock solid"
  ]
}

结果:

{
  "tokens": [
    {
      "token": "lucene",
      "start_offset": 0,
      "end_offset": 6,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "is",
      "start_offset": 7,
      "end_offset": 9,
      "type": "<ALPHANUM>",
      "position": 1
    },
    {
      "token": "cool",
      "start_offset": 10,
      "end_offset": 14,
      "type": "<ALPHANUM>",
      "position": 2
    },
    {
      "token": "elasticsearch",
      "start_offset": 15,
      "end_offset": 28,
      "type": "<ALPHANUM>",
      "position": 3
    },
    {
      "token": "builds",
      "start_offset": 29,
      "end_offset": 35,
      "type": "<ALPHANUM>",
      "position": 4
    },
    {
      "token": "on",
      "start_offset": 36,
      "end_offset": 38,
      "type": "<ALPHANUM>",
      "position": 5
    },
    {
      "token": "top",
      "start_offset": 39,
      "end_offset": 42,
      "type": "<ALPHANUM>",
      "position": 6
    },
    {
      "token": "of",
      "start_offset": 43,
      "end_offset": 45,
      "type": "<ALPHANUM>",
      "position": 7
    },
    {
      "token": "lucene",
      "start_offset": 46,
      "end_offset": 52,
      "type": "<ALPHANUM>",
      "position": 8
    },
    {
      "token": "elasticsearch",
      "start_offset": 53,
      "end_offset": 66,
      "type": "<ALPHANUM>",
      "position": 9
    },
    {
      "token": "rocks",
      "start_offset": 67,
      "end_offset": 72,
      "type": "<ALPHANUM>",
      "position": 10
    },
    {
      "token": "elastic",
      "start_offset": 73,
      "end_offset": 80,
      "type": "<ALPHANUM>",
      "position": 11
    },
    {
      "token": "is",
      "start_offset": 81,
      "end_offset": 83,
      "type": "<ALPHANUM>",
      "position": 12
    },
    {
      "token": "the",
      "start_offset": 84,
      "end_offset": 87,
      "type": "<ALPHANUM>",
      "position": 13
    },
    {
      "token": "company",
      "start_offset": 88,
      "end_offset": 95,
      "type": "<ALPHANUM>",
      "position": 14
    },
    {
      "token": "behind",
      "start_offset": 96,
      "end_offset": 102,
      "type": "<ALPHANUM>",
      "position": 15
    },
    {
      "token": "elk",
      "start_offset": 103,
      "end_offset": 106,
      "type": "<ALPHANUM>",
      "position": 16
    },
    {
      "token": "stack",
      "start_offset": 107,
      "end_offset": 112,
      "type": "<ALPHANUM>",
      "position": 17
    },
    {
      "token": "elk",
      "start_offset": 113,
      "end_offset": 116,
      "type": "<ALPHANUM>",
      "position": 18
    },
    {
      "token": "rocks",
      "start_offset": 117,
      "end_offset": 122,
      "type": "<ALPHANUM>",
      "position": 19
    },
    {
      "token": "elasticsearch",
      "start_offset": 123,
      "end_offset": 136,
      "type": "<ALPHANUM>",
      "position": 20
    },
    {
      "token": "is",
      "start_offset": 137,
      "end_offset": 139,
      "type": "<ALPHANUM>",
      "position": 21
    },
    {
      "token": "rock",
      "start_offset": 140,
      "end_offset": 144,
      "type": "<ALPHANUM>",
      "position": 22
    },
    {
      "token": "solid",
      "start_offset": 145,
      "end_offset": 150,
      "type": "<ALPHANUM>",
      "position": 23
    }
  ]
}

这些分出来的token都会成为词典里一个term,注意有些token会出现多次,因此在倒排索引里记录的词频会比较高,同时记录的还有这些token在原文档里的偏移量和相对位置信息。
执行一次suggester搜索看看效果:

POST /blogs/_search
{ 
  "suggest": {
    "my-suggestion": {
      "text": "lucne rock",
      "term": {
        "suggest_mode": "missing",
        "field": "body"
      }
    }
  }
}

suggest就是一种特殊类型的搜索,DSL内部的"text"指的是api调用方提供的文本,也就是通常用户界面上用户输入的内容。这里的lucne是错误的拼写,模拟用户输入错误。 "term"表示这是一个term suggester。 “field"指定suggester针对的字段,另外有一个可选的"suggest_mode”。 范例里的"missing"实际上就是缺省值,它是什么意思?有点挠头… 还是先看看返回结果吧:

结果:

{
  "took": 53,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": 0,
    "hits": []
  },
  "suggest": {
    "my-suggestion": [
      {
        "text": "lucne",
        "offset": 0,
        "length": 5,
        "options": [
          {
            "text": "lucene",
            "score": 0.8,
            "freq": 2
          }
        ]
      },
      {
        "text": "rock",
        "offset": 6,
        "length": 4,
        "options": [
          {
            "text": "rocks",
            "score": 0.75,
            "freq": 2
          }
        ]
      }
    ]
  }
}

在返回结果里"suggest" -> “my-suggestion"部分包含了一个数组,每个数组项对应从输入文本分解出来的token(存放在"text"这个key里)以及为该token提供的建议词项(存放在options数组里)。 示例里返回了"lucne”,“rock"这2个词的建议项(options),其中"rock"的options是空的,表示没有可以建议的选项,为什么? 上面提到了,我们为查询提供的suggest mode是"missing”,由于"rock"在索引的词典里已经存在了,够精准,就不建议啦。 只有词典里找不到词,才会为其提供相似的选项。

此处与原文结果略有不同。

如果将"suggest_mode"换成"popular"会是什么效果?
尝试一下,重新执行查询,返回结果里"rock"这个词的option不再是空的,而是建议为rocks。

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": 0,
    "hits": []
  },
  "suggest": {
    "my-suggestion": [
      {
        "text": "lucne",
        "offset": 0,
        "length": 5,
        "options": [
          {
            "text": "lucene",
            "score": 0.8,
            "freq": 2
          }
        ]
      },
      {
        "text": "rock",
        "offset": 6,
        "length": 4,
        "options": [
          {
            "text": "rocks",
            "score": 0.75,
            "freq": 2
          }
        ]
      }
    ]
  }
}

回想一下,rock和rocks在索引词典里都是有的。 不难看出即使用户输入的token在索引的词典里已经有了,但是因为存在一个词频更高的相似项,这个相似项可能是更合适的,就被挑选到options里了。 最后还有一个"always" mode,其含义是不管token是否存在于索引词典里都要给出相似项。

有人可能会问,两个term的相似性是如何判断的? ES使用了一种叫做Levenstein edit distance的算法,其核心思想就是一个词改动多少个字符就可以和另外一个词一致。 Term suggester还有其他很多可选参数来控制这个相似性的模糊程度,这里就不一一赘述了。

Term suggester正如其名,只基于analyze过的单个term去提供建议,并不会考虑多个term之间的关系。API调用方只需为每个token挑选options里的词,组合在一起返回给用户前端即可。 那么有无更直接办法,API直接给出和用户输入文本相似的内容? 答案是有,这就要求助Phrase Suggester了。

option数组

options数组包含给定词的建议词。如果elasticsearch没有找到任何建议词,则options数组为空。数组中的每一项都包含一个建议词和以下可以用来表征该建议的信息:

  • text:elasticsearch给出的建议词
  • score:建议词的得分,得分越高的建议词其质量越高
  • freq:建议词的文档频率。这里的频率指建议词在被查询索引的多少个文档中出现过。文档频率越高,说明包含这个建议词的文档也越多,并且这个词符合我们查询意图的可能性也越大。

(2)Phrase Suggester

可以返回完整的短语建议而不是单个词项的建议。
Phrase suggester在Term suggester的基础上,会考量多个term之间的关系,比如是否同时出现在索引的原文里,相邻程度,以及词频等等。看个范例就比较容易明白了:

POST /blogs/_search
{
  "suggest": {
    "my-suggestion": {
      "text": "lucne and elasticsear rock",
      "phrase": {
        "field": "body",
        "highlight": {
          "pre_tag": "<em>",
          "post_tag": "</em>"
        }
      }
    }
  }
}

结果:

{
  "took": 18,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": 0,
    "hits": []
  },
  "suggest": {
    "my-suggestion": [
      {
        "text": "lucne and elasticsear rock",
        "offset": 0,
        "length": 26,
        "options": [
          {
            "text": "lucne and elasticsearch rocks",
            "highlighted": "lucne and <em>elasticsearch rocks</em>",
            "score": 0.12709484
          },
          {
            "text": "lucne and elasticsearch rock",
            "highlighted": "lucne and <em>elasticsearch</em> rock",
            "score": 0.10422645
          },
          {
            "text": "lucne and elasticsear rocks",
            "highlighted": "lucne and elasticsear <em>rocks</em>",
            "score": 0.10036137
          }
        ]
      }
    ]
  }
}

options直接返回一个phrase列表,由于加了highlight选项,被替换的term会被高亮。因为lucene和elasticsearch曾经在同一条原文里出现过,同时替换2个term的可信度更高,所以打分较高,排在第一位返回。Phrase suggester有相当多的参数用于控制匹配的模糊程度,需要根据实际应用情况去挑选和调试。

此处与原文结果略有不同。

(3)Completion Suggester

最后来谈一下Completion Suggester,它主要针对的应用场景就是"Auto Completion"。 此场景下用户每输入一个字符的时候,就需要即时发送一次查询请求到后端查找匹配项,在用户输入速度较高的情况下对后端响应速度要求比较苛刻。因此实现上它和前面两个Suggester采用了不同的数据结构,索引并非通过倒排来完成,而是将analyze过的数据编码成FST和索引一起存放。对于一个open状态的索引,FST会被ES整个装载到内存里的,进行前缀查找速度极快。但是FST只能用于前缀查找,这也是Completion Suggester的局限所在。

PUT /blogs_completion/
{
  "mappings": {
      "properties": {
        "body": {
          "type": "completion"
      }
    }
  }
}

用bulk API索引点数据:

POST _bulk/?refresh=true
{ "index" : { "_index" : "blogs_completion" } }
{ "body": "Lucene is cool"}
{ "index" : { "_index" : "blogs_completion" } }
{ "body": "Elasticsearch builds on top of lucene"}
{ "index" : { "_index" : "blogs_completion" } }
{ "body": "Elasticsearch rocks"}
{ "index" : { "_index" : "blogs_completion" } }
{ "body": "Elastic is the company behind ELK stack"}
{ "index" : { "_index" : "blogs_completion" } }
{ "body": "the elk stack rocks"}
{ "index" : { "_index" : "blogs_completion" } }
{ "body": "elasticsearch is rock solid"}

查找:

POST blogs_completion/_search?pretty
{ "size": 0,
  "suggest": {
    "blog-suggest": {
      "prefix": "elastic i",
      "completion": {
        "field": "body"
      }
    }
  }
}

结果:

{
  "took": 44,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": 0,
    "hits": []
  },
  "suggest": {
    "blog-suggest": [
      {
        "text": "elastic i",
        "offset": 0,
        "length": 9,
        "options": [
          {
            "text": "Elastic is the company behind ELK stack",
            "_index": "blogs_completion",
            "_type": "tech",
            "_id": "WpgeMGoBguJ9vUco0qbN",
            "_score": 1,
            "_source": {
              "body": "Elastic is the company behind ELK stack"
            }
          }
        ]
      }
    ]
  }
}

值得注意的一点是Completion Suggester在索引原始数据的时候也要经过analyze阶段,取决于选用的analyzer不同,某些词可能会被转换,某些词可能被去除,这些会影响FST编码结果,也会影响查找匹配的效果。

比如我们新建索引blogs_completion_new,将analyzer更改为"english":

PUT /blogs_completion_new/
{
  "mappings": {
      "properties": {
        "body": {
          "type": "completion",
          "analyzer": "english"
      }
    }
  }
}

用bulk API索引点数据:

POST _bulk/?refresh=true
{ "index" : { "_index" : "blogs_completion_new" } }
{ "body": "Lucene is cool"}
{ "index" : { "_index" : "blogs_completion_new" } }
{ "body": "Elasticsearch builds on top of lucene"}
{ "index" : { "_index" : "blogs_completion_new" } }
{ "body": "Elasticsearch rocks"}
{ "index" : { "_index" : "blogs_completion_new" } }
{ "body": "Elastic is the company behind ELK stack"}
{ "index" : { "_index" : "blogs_completion_new" } }
{ "body": "the elk stack rocks"}
{ "index" : { "_index" : "blogs_completion_new" } }
{ "body": "elasticsearch is rock solid"}

执行下面的查询:

POST blogs_completion_new/_search?pretty
{ "size": 0,
  "suggest": {
    "blog-suggest": {
      "prefix": "elastic i",
      "completion": {
        "field": "body"
      }
    }
  }
}

结果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": 0,
    "hits": []
  },
  "suggest": {
    "blog-suggest": [
      {
        "text": "elastic i",
        "offset": 0,
        "length": 9,
        "options": []
      }
    ]
  }
}

居然没有匹配结果了,多么费解! 原来我们用的english analyzer会剥离掉stop word,而is就是其中一个,被剥离掉了!
用analyze api测试一下:

POST _analyze
{
  "analyzer": "english",
  "text": "elasticsearch is rock solid"
}

在elasticsearch6.3.1中,如果使用原文作者那样的写法,这里将会报错"type": “illegal_argument_exception”,
“reason”: “request [/_analyze] contains unrecognized parameter: [analyzer]”

结果是:

{
  "tokens": [
    {
      "token": "elasticsearch",
      "start_offset": 0,
      "end_offset": 13,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "rock",
      "start_offset": 17,
      "end_offset": 21,
      "type": "<ALPHANUM>",
      "position": 2
    },
    {
      "token": "solid",
      "start_offset": 22,
      "end_offset": 27,
      "type": "<ALPHANUM>",
      "position": 3
    }
  ]
}

FST只编码了这3个token,并且默认的还会记录他们在文档中的位置和分隔符。 用户输入"elastic i"进行查找的时候,输入被分解成"elastic"和"i",FST没有编码这个“i” , 匹配失败。

好吧,如果你现在还足够清醒的话,试一下搜索"elastic is",会发现又有结果,why? 因为这次输入的text经过english analyzer的时候is也被剥离了,只需在FST里查询"elastic"这个前缀,自然就可以匹配到了。

其他能影响completion suggester结果的,还有诸如"preserve_separators","preserve_position_increments"等等mapping参数来控制匹配的模糊程度。以及搜索时可以选用Fuzzy Queries,使得上面例子里的"elastic i"在使用english analyzer的情况下依然可以匹配到结果。

因此用好Completion Sugester并不是一件容易的事,实际应用开发过程中,需要根据数据特性和业务需要,灵活搭配analyzer和mapping参数,反复调试才可能获得理想的补全效果。

回到篇首Google搜索框的补全/纠错功能,如果用ES怎么实现呢?我能想到的一个的实现方式:
在用户刚开始输入的过程中,使用Completion Suggester进行关键词前缀匹配,刚开始匹配项会比较多,随着用户输入字符增多,匹配项越来越少。如果用户输入比较精准,可能Completion Suggester的结果已经够好,用户已经可以看到理想的备选项了。
如果Completion Suggester已经到了零匹配,那么可以猜测是否用户有输入错误,这时候可以尝试一下Phrase Suggester。
如果Phrase Suggester没有找到任何option,开始尝试term Suggester。

精准程度上(Precision)看: Completion > Phrase > term, 而召回率上(Recall)则反之。从性能上看,Completion Suggester是最快的,如果能满足业务需求,只用Completion Suggester做前缀匹配是最理想的。 Phrase和Term由于是做倒排索引的搜索,相比较而言性能应该要低不少,应尽量控制suggester用到的索引的数据量,最理想的状况是经过一定时间预热后,索引可以全量map到内存。

自己项目中的测试例子:

DELETE /steven_suggest/


PUT /steven_suggest/
{
  "mappings": {
    "properties": {
      "lable": {
        "type": "completion"
      }
    }
  }
}

GET /steven_suggest/_search
{
  "query": {
    "match_all": {}
  }
}

POST /steven_suggest/_search
{ 
  "suggest": {
    "my-suggestion": {
      "prefix": "原告涉",
      "completion": {
        "field": "lable"
      }
    }
  }
}

(4)global-suggest

POST _search
{
  "suggest": {
    "my-suggest-1" : {
      "text" : "tring out Elasticsearch",
      "term" : {
        "field" : "message"
      }
    },
    "my-suggest-2" : {
      "text" : "kmichy",
      "term" : {
        "field" : "user"
      }
    }
  }
}

To avoid repetition of the suggest text, it is possible to define a global text. In the example below the suggest text is defined globally and applies to the my-suggest-1 and my-suggest-2 suggestions.

翻译:

为了避免重复建议文本,可以定义全局文本。在下面的示例中,suggest文本是全局定义的,适用于my-suggest-1和my-suggest-2建议。

 

POST _search
{
  "suggest": {
    "text" : "tring out Elasticsearch",
    "my-suggest-1" : {
      "term" : {
        "field" : "message"
      }
    },
    "my-suggest-2" : {
       "term" : {
        "field" : "user"
       }
    }
  }
}

“field”: “_all”

对于term suggest,可以使用"field": "_all"

POST /blogs/_search
{ 
 "suggest": {
   "my-suggestion": {
     "text": "lucne rock",
     "term": {
       "suggest_mode": "missing",
       "field": "_all"
     }
   }
 }
}

其他

analyzer

The analyzer to analyse the suggest text with. Defaults to the search analyzer of the suggest field. 指定分析器。分析器会将我们提供的text文本切分成词项。如果不指定本选项的值,elasticsearch会使用filed参数所对应字段的分析器。

在phrase suggester中,有smoothing model(平滑模型):平衡索引中不存在的稀有n-gram词元和索引中存在的高频n-gram词元之间的权重。

©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页