whisper相关的开源项目 (asr)

基于 Whisper(OpenAI 的开源语音识别模型)的开源项目有很多,涵盖了不同应用场景和优化方向。以下是一些值得关注的项目:


1. 核心工具 & 增强版 Whisper

  • OpenAI Whisper

    • 由 OpenAI 开源的通用语音识别模型,支持多语言转录和翻译,基于 PyTorch 实现。
  • faster-whisper

    • 使用 CTranslate2 加速推理,支持 CPU/GPU,速度比原版快 4 倍,内存占用更低。
    • 适合需要高效部署的场景。API 与原始 Whisper 兼容。
  • WhisperX
    基于faster-whisper,在 Whisper 基础上增加了:

    • Word-level Timestamps(精确到词级时间戳)
      基于 wav2vec2 对齐的精准词级时间戳
    • Speaker Diarization(说话人分离) 是指将包含多人对话的音频流,按不同说话人分割成独立片段的过程,核心目标是回答:
      • “谁在什么时候说了什么?”
    • Phoneme-Based ASR(音素级ASR)
      针对音素(语音最小区分单位,如 “tap” 中的 /p/)优化的自动语音识别模型。
      • 细粒度识别,提升发音差异捕捉能力。
    • 语音活动检测(VAD)
      其核心作用是区分有效语音段与静音/背景噪声,为后续语音处理提供纯净输入。通过仅处理有效语音段提升批处理(batching)效率。
  • whisper.cpp

    • 纯 C/C++ 实现的 Whisper,支持量化模型(轻量级),可在树莓派、手机等边缘设备运行。
    • 支持 macOS、iOS、Android 等平台。
  • insanely-fast-whisper

    • 结合 Transformers 和 Flash Attention 2,实现极速转录(支持批量处理)。

2. 图形界面 & 易用工具

  • whisper-asr-webservice

    • 将 Whisper 封装为 REST API,方便后端调用。
  • Whisper WebUI

    • 基于Gradio的 Web 的交互界面,适合浏览器端使用。
  • Whisper Web

    • 直接在浏览器中运行,无需后端服务器。
  • Whisper Desktop

    • 跨平台桌面应用(Windows/Linux/macOS),支持实时麦克风输入转录。
  • Buzz

    • 简洁的桌面客户端,支持离线转录和翻译(Windows/macOS/Linux)。

3. 实时转录 & 直播应用

  • whisper-live

    • 低延迟实时语音转录,支持直播流或会议场景。
  • whisper-streaming

    • 实时流式处理,逐句输出结果,减少延迟。

4. 开发者工具 & 集成


5. 视频翻译配音工具

  • VideoLingo

    • Netflix级字幕切割、翻译、对齐、甚至加上配音,一键全自动视频搬运AI字幕组
    • 使用 WhisperX 进行单词级和低幻觉字幕识别
  • pyvideotrans

    • 支持视频字幕, 语音识别转录、语音合成、字幕翻译。
    • 语音识别支持 faster-whisper和openai-whisper

选择建议

  • 追求速度faster-whisperwhisper.cpp
  • 低资源设备whisper.cpp(量化模型)
  • 实时场景whisper-streamingwhisper-live
  • 易用性BuzzWhisper Desktop
内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值