MT【286】最佳有理逼近

2017北大优秀中学生夏令营
已知$\omega $是整系数方程$x^2+ax+b=0$的一个无理数根,

求证:存在常数$C$,使得对任意互质的正整数$p,q$都有$$|\omega-\dfrac{p}{q}|\ge \dfrac{C}{q^2}$$

分析:这题涉及的背景知识是数论里的最佳有理逼近和Liouville超越数定理.
一般的$\omega $是整系数方程$f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0=0$的一个根,
则显然存在$C=C(\omega)=\max\{\dfrac{1}{q^n},n*\max\limits_{k=1,2,\cdots,n}|ka_k^{k-1}|\}$,
当$\omega-1<x<\omega+1$ 时$|f^{'}(x)|=|na_nx^{n-1}+\cdots+a_1|<C$,故
若$\dfrac{p}{q}\in[\omega-1,\omega+1]$时
由拉格朗日中值定理$f(\dfrac{p}{q})-f(\omega)=(\dfrac{p}{q}-\omega)f^{'}(\eta)$
又$f|(\dfrac{p}{q})|=\dfrac{|a_np^n+a_{n-1}p^{n-1}q+\cdots+a_0q^n|}{q^n}\ge \dfrac{1}{q^n}$
故$|\omega-\dfrac{p}{q}|=\dfrac{|f(\dfrac{p}{q})|}{|f^{'}(\eta)|}>\dfrac{1}{Cq^n}$
若$\dfrac{p}{q}\notin[\omega-1,\omega+1]$时
$|\omega-\dfrac{p}{q}|>1\ge\dfrac{1}{Cq^n}$

注:

Liouville 定理:任意$n$次实代数数不能有$n$次以上的有理渐进分数.
即:若是一个$n$次代数数,则对任意$\epsilon>0,A>0$,不等式
$$|\omega-\dfrac{p}{q}|<\dfrac{A}{q^{n+\epsilon}}$$的整数解$(p,q)$的个数有限.

注:若$\omega$为无理数.则有无穷个整数解$(p,q)$使得$|\omega-\dfrac{p}{q}|<\dfrac{1}{2q^2}$

注:(Hruwitz)若$\omega$为无理数.则有无穷个整数解$(p,q)$使得$|\omega-\dfrac{p}{q}|<\dfrac{1}{\sqrt{5}q^2}$,这里的$\sqrt{5}$是最佳的。

转载于:https://www.cnblogs.com/mathstudy/p/10302726.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值