- 博客(353)
- 收藏
- 关注
转载 MT【354】又一道极值点偏移
(2014天津)已知函数$f(x)=x-ae^x(a\in R)$,有两个零点$x_1,x_2,(x_1<x_2)$(1)求$a$的取值范围;(2)证明:$\dfrac{x_2}{x_1}$随着$a$的减小而增大;(3)证明:$x_1+x_2$随着$a$的减小而增大.分析:(1)(2)可以通过参变分离研究$y=\dfrac{x}{e^x}$ 的图像,(如图)易得.(3)...
2019-08-24 16:24:00 307
转载 MT【353】线性化夹逼
若实数$a,b$满足$\dfrac{5}{2}a-\dfrac{3}{2}b-2\le\ln(a+b)+\ln(a-b)$, 求$5a-3b$=______注意到:$\ln x\le x-1(x>0)$则$\ln(a+b)+\ln(a-b)=\ln(\dfrac{1}{2}(a+b))+\ln2(a+b)$$\le \dfrac{1}{2}(a+b)-1+2(a+b)-1=...
2019-08-24 07:07:00 231
转载 MT【352】极值点偏移
$0<x<y,x^y=y^x$,证明:$x+y>2e$分析:注意到条件变形为$\dfrac{\ln x}{x}=\dfrac{\ln y}{y}\in(0,\dfrac{1}{e})$,结合对数算术平均不等式以及合分比定理得$\dfrac{x+y}{2}\ge\dfrac{x-y}{\ln x-\ln y}\in(0,\dfrac{1}{e})$故$x+y>2...
2019-08-20 11:28:00 274
转载 MT【351】行列式面积公式
(中科大2019)已知平面坐标系上三点$A(1,0),B(0,1),C(x,\dfrac{1}{\sqrt{x}})$求$\Delta ABC$面积的最小值___分析:$S_{\Delta ABC}=\dfrac{1}{2}\left|\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 1 & ...
2019-08-20 10:55:00 401
转载 MT【350】隐零点两题
已知函数$f(x)=ae^x-\dfrac{a+1}{x}-2(a+1)\ge0,(a>0)$对任意的$x\in(0,+\infty)$恒成立,求$a$的范围.分析:$f^{'}(x)=\dfrac{g(x)}{x^2},$其中$g(x)=ae^xx^2-(a+1),(a>0,x>0).$$\because g(x)=ae^xx^2-(a+1)>ax^2-(a...
2019-08-19 20:03:00 157
转载 MT【349】同时取到
已知$\theta \in[0,2\pi]$求$2\cos\theta-\sin\theta-\dfrac{\sin\theta+\sqrt{5}}{\cos\theta+\sqrt{5}}$的最小值_____分析:$2\cos\theta-\sin\theta-\dfrac{\sin\theta+\sqrt{5}}{\cos\theta+\sqrt{5}}=\textbf{ON}\cd...
2019-08-16 21:18:00 153
转载 MT【348】反函数图像解题
设实数$\lambda >0$,若对任意的$x\in(e^2,+\infty)$,不等式$\lambda e^{\lambda x}-\ln x>0$恒成立,则$\lambda$的最小值为_____提示:反函数,由题意$e^{\lambda x}\ge \dfrac{\ln x}{\lambda}$,注意到$y=e^{\lambda x}$与$y=\dfrac{\ln x...
2019-08-14 21:46:00 312
转载 MT【347】单变量求最值
设函数$f(x)=ln(ax+b)-x,$若$f(x)\le0$恒成立,求$ab$的最大值_____提示:设$g(x)=e^x-ax-b$,极值点为$x=\ln a$,故$ab\le a(a-a\ln a)\le \dfrac{e}{2}$,当$a=\sqrt{e},b=\dfrac{\sqrt{e}}{2}$时取到最大值.转载于:https://www.cnblogs.com/...
2019-08-14 21:23:00 148
转载 MT【346】拐点处分界
已知函数$f(x)=-x^3+9x^2-26x+27$,对任意$k>0$,直线$y=kx+a$与曲线$y=f(x)$有唯一公共点,求$a$的取值范围.分析:$f^{"}(x)=-6x+18$,如图,$f(x)$在$(-\infty,3)$下凸,$(3,+\infty)$上凸.拐点$P(3,f(3))$处的切线方程为$y=x$.$f(x)$的极大值为$M(3+\dfrac{\sq...
2019-08-14 09:07:00 194
转载 MT【345】三个绝对值的和
已知三个单位向量$\textbf{a},\textbf{b},\textbf{c}$满足$\textbf{a}+\textbf{b}+\textbf{c}=\textbf{0},\textbf{e}$ 是该平面内任意的单位向量求$2|\textbf{e}\cdot\textbf{a}|+3|\textbf{e}\cdot\textbf{b}|+4|\textbf{e}\cdot\text...
2019-08-13 21:50:00 443
转载 MT【344】构造函数
(2014卓越11)已知$f(x)$为$R$上的可导函数,且对$\forall x_0\in R$ 有$0<f^{'}(x+x_0)-f^{'}(x_0)<4x(x>0)$.(1)对$\forall x_0\in R$,证明:$f^{'}(x_0)<\dfrac{f(x+x_0)-f(x_0)}{x} (x>0)$(2)若$|f(x)|\le1,x\i...
2019-08-13 21:24:00 240
转载 MT【343】三数平方法
已知$|\textbf{a}|=2,|\textbf{b}|=|\textbf{c}|=1,$则$(\textbf{a}-\textbf{b})\cdot(\textbf{c}-\textbf{b})$ 的最小值为_____分析:(三数平方法)$(\textbf{a}-\textbf{b})\cdot(\textbf{c}-\textbf{b})=\textbf{a}\cdot\te...
2019-08-13 20:36:00 160
转载 MT【342】条件为非负实数
已知$x,y,z$为非负实数,满足$(x+\dfrac{1}{2})^2+(y+1)^2+(z+\dfrac{3}{2})^2=\dfrac{27}{4}$,则$x+y+z$的最小值为______分析:由题意$x^2+y^2+z^2+x+2y+3z=\dfrac{13}{4}$故$\dfrac{13}{4}\le (x+y+z)^2+3(x+y+z)$得$x+y+z\ge\dfrac...
2019-08-11 22:01:00 224
转载 MT【341】换元变形
若正数$a,b,c$满足$\dfrac{b+c}{a}+\dfrac{a+c}{b}=\dfrac{a+b}{c}+1$,则$\dfrac{a+b}{c}$的最小值为______ 答案:$\dfrac{1+\sqrt{17}}{2}$ 解:记$x=\dfrac{a}{c}>0,y=\dfrac{b}{c}>0$则由题意$\dfrac{y}{x}+\dfrac{x}{y}+...
2019-05-28 09:26:00 166
转载 MT【340】彭塞列闭合定理
如图,设点$P$时抛物线$C_1:y^2=4x$上的动点,过$P$作圆$C_2:(x-3)^2+y^2=r^2(r>0)$的两条切线交抛物线$C_1$于$A,B$两点,其中$M,N$为切点.若过$A,B$两点的直线恒与$C_2$ 相切,求$r$的值.解答:从必要性入手,当$P(0,0)$时,由几何关系易知半径满足$r^3+7r^2-36=0$故$r=2,r=-3,...
2019-05-11 11:25:00 1784
转载 MT【339】待定系数
已知函数$f(x)=ax^2+bx+c$,若存在$a\in[1,2],$对任意$x\in[0,1]$,都有$f(x)\le1$,则$2b+3c$的最大值为_____分析:由题意$f(0)=c\le1,f(1)=a+b+c\le1$故$mf(0)+nf(1)=(m+n)c+nb+na\le m+n$令$2(m+n)=3n$代入得$3c+2b\le 3-2a$由于$a\in[1,2]$故...
2019-05-09 20:19:00 155
转载 MT【338】分式变形
已知首项为$a_1$公比为$q$的等比数列$\{a_n\}$满足$q^4+a_4+a_3+a_2+1=0$则$a_1$的取值范围_____答案:$\in(-\infty,-\dfrac{2}{3}]\cup[2,+\infty)$分析:由题意$a_1=-\dfrac{1+q^4}{q+q^2+q^3}=-\dfrac{q^2+\frac{1}{q^2}}{q+\frac{1}{q...
2019-05-09 10:35:00 166
转载 MT【337】糖水不等式
已知$b_n=\dfrac{1}{2n-1}$是否存在正数$m$,使得$(1+b_1)(1+b_2)\cdots(1+b_n)\ge m\sqrt{2n+1}$恒成立分析:记$I_n=(1+b_1)(1+b_2)\cdots(1+b_n)=\dfrac{2}{1}\cdot\dfrac{4}{3}\cdots\dfrac{2n}{2n-1}$由糖水不等式$\dfrac{k}{k+1}...
2019-05-09 10:33:00 503
转载 MT【336】二次函数"脱衣服"
已知函数$f(x)=x^2+bx+c,(|b|\le5,c\in R)$,记$A=\{x|f(x)=x\},B=\{f(f(x))=x\}$若集合$A=\{x_1,x_2\},B=\{x_1,x_2,x_3,x_4\}$,且$|x_1-x_2|+|x_3-x_4|\le1+\sqrt{5}$恒成立,求$b+c$的取值范围.分析:不妨设$x_2> x_1,x_4> x_3$...
2019-05-08 22:10:00 275
转载 MT【335】最多有几个
已知等差数列$\{a_n\}$满足:$|a_1|+|a_2|+\cdots+|a_n|=|a_1+1|+|a_2+1|+\cdots+|a_n+1|=|a_1-1|+|a_2-1|+\cdots+|a_n-1|=98$ 则$n$的最大值为_____分析:注意到$|a_k+1|+|a_k-1|\ge2|a_k|$当$a_k\ge1\vee a_k\le -1$时等号成立.故$2*98=...
2019-05-08 22:07:00 196
转载 MT【334】向量配方
已知平面向量$\textbf{a},\textbf{b},\textbf{c}$,且$|\textbf{a}|=1,\textbf{a}\cdot(\textbf{a}+\textbf{b})=|\textbf{b}|$则$|\textbf{c}|^2+|\textbf{b}|^2-\textbf{a}\cdot\textbf{b}-\textbf{a}\cdot\textbf{c}-\...
2019-05-08 22:04:00 153
转载 MT【333】二次曲线系方程
已知椭圆$\dfrac{x^2}{16}+\dfrac{y^2}{4}=1$的下顶点为$A$,若直线$x=ty+4$与椭圆交于不同的两点$M,N$则当$t=$______时,$\Delta AMN$外心的横坐标最大.解答:设椭圆与圆交于四个点$A,M,N,T$,其中$M(4,0)$则$NT\cup AM:(Ax+By+C)*(x-2y-4)=0$则两条直线与椭圆构成的曲线系$(Ax+...
2019-05-04 13:55:00 605
转载 MT【332】椭圆正交变换
(2018河南数学联赛解答10)已知方程$17x^2-16xy+4y^2-34x+16y+13=0$表示椭圆,求它的对称中心和对称轴. 解:设对称中心为$(a,b)$,显然$A(1,1),B(1,-1)$在图像上, 所以对称点$A^{'}(2a-1,2b-1),B^{'}(2a-1,2b+1)$也在椭圆上, 代入作差化简得$b=2a-2,4a^2-8a+4=0$即$a=...
2019-04-23 19:29:00 941
转载 MT 【331】两元非齐次不等式
若正实数$x,y$满足$x^3+y^3=(4x-5y)y$ 则 $y$ 的最大值为____解答:$x^3+y^3+y^2=4(x-y)y\le x^2$,故$y^3+y^2=x^2-x^3=\dfrac{x(2-2x)x}{2}\le\dfrac{4}{27}$,故由$f(t)=t^3+t^2$的单调性$y\le \dfrac{1}{3}$转载于:https://www.cnbl...
2019-04-23 12:26:00 175
转载 MT【330】u,v,w法
已知$a^2+b^2+c^2=1$求$abc(a+b+c)$的最小值.(2018辽宁预赛解答压轴题)不妨设$a+b+c=3u,ab+bc+ca=3v^2,abc=w^3$,令$u^2=tv^2$要求最小值只需考虑$a,b>0,c<0,a+b+c>0$此时$t<\dfrac{2}{3}$则$\dfrac{abc(a+b+c)}{(a^2+b^2+c^2)^2}=...
2019-04-23 12:11:00 117
转载 MT【329】二次函数系数的最大最小
已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值.分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$则$t=\min\{a,b\}$.由$b^2\ge4ac$得$(2a+b)^2\ge4a $,由于求$t$的最大值,只需考虑$a,b>0$(不然则$t=\min\{a,b\}\le0...
2019-04-16 14:57:00 184
转载 MT【328】向量里的最佳逼近
已知平面向量$\overrightarrow {a},\overrightarrow {b}$满足$|\overrightarrow {a}|=4,|\overrightarrow {b}|=2$.若对于任意共面的单位向量$\overrightarrow {e},$记$|\overrightarrow {a}\cdot\overrightarrow {e}|+|\overrightarr...
2019-04-15 15:26:00 610
转载 MT【327】两道不等式题
当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$解:1)$P(x,y)$为直线$x+y=2$上一点,点$H$为$P$到$y$轴的投影点,设$A(1,0)$则$A$关于$x+y=2$的对称点$A'(2,1)$ 故$x+\sqrt{x^2-2x+y^2...
2019-04-11 20:20:00 104
转载 MT【326】曲线中的爱恨情仇
【我思故我在】----笛卡尔爱心曲线$r=a(1-sin\theta)$Matrix 67分手曲线转载于:https://www.cnblogs.com/mathstudy/p/10674922.html
2019-04-09 09:30:00 104
转载 MT【325】垂心的向量形式
设$H$为垂心,且$3\overrightarrow{HA}+4\overrightarrow {HB}+5\overrightarrow {HC}=\overrightarrow 0$,则$\cos\angle AHB=$____分析:$\tan A\overrightarrow {HA}+\tan B\overrightarrow {HB}+\tan C\overrightarr...
2019-04-09 09:04:00 1260
转载 MT【324】增量代换
实数$a,b,c$满足$a^2+b^2+c^2=1$求$f=\min\{(a-b)^2,(b-c)^2,(c-a)^2\}$的最大值分析:由对称性不妨设$c\ge b\ge a$,令$b-a=s,c-b=t,$其中$s,t\ge 0$则条件变为$3a^2+(4s+2t)a+2s^2+2st+t^2-1=0$由判别式$\Delta\ge0$得$s^2+t^2+st\le\dfrac{3...
2019-04-09 08:25:00 300
转载 MT【323】向量模的范围
已知单位向量 $\overrightarrow e_1,\overrightarrow e_2$ 的夹角为 $120^\circ$,$\left|x\overrightarrow e_1+y\overrightarrow e_2\right|=\sqrt 3$($x,y\in\mathbb R$),则 $\left|x\overrightarrow e_1-y\overrightarro...
2019-04-03 13:42:00 390
转载 MT【322】绝对值不等式
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$分析:不妨设$c=\max\{a,b,c\},\dfrac{a}{c}=x,\dfrac{b}{c}=y$两边同除$|c|$后只需证明$|x|+|y|+1+|x+y+1|\ge|x+y|+|y+1|+|x+1|$注意到恒等式$|x|+...
2019-04-03 13:37:00 188
转载 MT【321】分类线性规划
若二次函数$f(x)=ax^2+bx+c(a,b,c>0)$有零点,则$\min\{\dfrac{b+c}{a},\dfrac{c+a}{b},\dfrac{a+b}{c}\}$ 的最大值为____由题意$b^2\ge 4ac,$由$a,c$的对称性只需考虑$b=max\{a,b,c\}\vee a=\max\{a,b,c\}$.当$b=max\{a,b,c\}$时$\min\...
2019-03-28 09:07:00 128
转载 MT【320】依次动起来
已知$ BC=6,AC=2AB, $点$ D $满足$ \overrightarrow{AD}=\dfrac{2x}{x+y}\overrightarrow{AB}+\dfrac{y}{2(x+y)}\overrightarrow{AC}, $设$f(x,y)=|\overrightarrow{AD}|,$若$ f(x,y)\ge f(x_0,y_0) $恒成立,则$f(x_0,y_0)...
2019-03-25 16:29:00 439
转载 MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin x_n&,x_n\le x_{n-1}\\x_n+\cos x_n&,x_n> x_{n-1}\end{aligned} \right.\end{equation*}证...
2019-03-25 08:14:00 189
转载 MT【318】分式不等式双代换
已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值.解:令$m=\dfrac{1}{a},n=\dfrac{1}{b}$,则$m+n=\dfrac{2}{3}$$\dfrac{1}{a-1}+\dfrac{4}{b-1}=\dfrac{m}{1-m}+\d...
2019-03-21 19:02:00 220
转载 MT【317】两次判别式
已知$a^2+b^2+c^2-ab-bc=1$求$c$的最大值______注意到$2c^2-3(a^2+b^2+c^2-ab-bc)=-(c-\dfrac{3}{2}b)^2-3(a-\dfrac{b}{2})^2\le0$故$c\le\dfrac{\sqrt{6}}{2}$这里化成齐次后直接用两次判别式易得,参考MT【169】但是困难的是不能化成齐次的,如MT【189】,M...
2019-03-20 08:26:00 114
转载 MT【316】常数变易法
已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n(n+1)}+\dfrac{1}{n(n+1)}$累加得$a_n=\dfrac{n(n-1)}{2}$注:这里关键是变形,可以用常数变易法获取.提示:求通解$a_{n+1}=\dfrac{n...
2019-03-18 12:21:00 302
转载 MT【315】勾股数
(高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a_n,b_n,c_n$为正整数,且$a_n^2,b_n^2,c_n^2$成等差数列解答:(1)$2b^2=a^2+c^2$令$x=\dfrac{c}{a},y=\dfrac{b}{a}$...
2019-03-18 12:08:00 267
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人