已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围______
\(\textbf{解:}\)考虑到是奇函数,只需考虑 |f(x)|= \(\dfrac{2}{3}\),
由于\((x\sqrt{a-x^2}+\sqrt{1-x^2}x)^2\le(x^2+1-x^2)(a-x^2+x^2)=a\)
得\(|f(x)|\le|\dfrac{\sqrt{a}}{a-1}|=\dfrac{2}{3},a=4,\textbf{或者}\dfrac{1}{4}\)
转载于:https://www.cnblogs.com/mathstudy/p/8744907.html