MT【124】利用柯西求最值

已知 \(a\) 为常数,函数\(f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}\) 的最小值为\(-\dfrac{2}{3}\),则 \(a\) 的取值范围______
550349-20180408144557584-120446798.jpg
\(\textbf{解:}\)考虑到是奇函数,只需考虑 |f(x)|= \(\dfrac{2}{3}\),
由于\((x\sqrt{a-x^2}+\sqrt{1-x^2}x)^2\le(x^2+1-x^2)(a-x^2+x^2)=a\)
\(|f(x)|\le|\dfrac{\sqrt{a}}{a-1}|=\dfrac{2}{3},a=4,\textbf{或者}\dfrac{1}{4}\)

转载于:https://www.cnblogs.com/mathstudy/p/8744907.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值