MT【263】待定系数

本文探讨了在给定条件下$ab(a+b)=4$,$a,b>0$时,如何利用数学不等式原理求解$2a+b$的最小值。通过引入待定系数法,并结合算术几何平均数不等式,最终得出结论。

已知$a,b>0$且$ab(a+b)=4$,求$2a+b$的最小值_____

解答:$\sqrt{3}(2a+b)\ge(\sqrt{3}+1)a+b+(\sqrt{3}-1)(a+b)\ge3\sqrt[3]{2ab(a+b)}=6$
提示:待定系数,利用等号成立条件:$\lambda a+b+\mu (a+b)\ge3\sqrt[3]{\lambda\mu ab(a+b)}$

转载于:https://www.cnblogs.com/mathstudy/p/10107358.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值