MT【332】椭圆正交变换

本文解析了一个特定的二次方程表示的椭圆,确定了其对称中心位于(1,0),并利用正交变换计算出了对称轴的方程。通过具体的数学步骤展示了如何找到椭圆的基本属性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(2018河南数学联赛解答10)

已知方程$17x^2-16xy+4y^2-34x+16y+13=0$表示椭圆,求它的对称中心和对称轴.

 

解:设对称中心为$(a,b)$,显然$A(1,1),B(1,-1)$在图像上,
所以对称点$A^{'}(2a-1,2b-1),B^{'}(2a-1,2b+1)$也在椭圆上,
代入作差化简得$b=2a-2,4a^2-8a+4=0$即$a=1,b=0$
作正交变换$(x,y)=(x^{'},y^{'})\cdot(\cos\theta,\sin\theta)$则$\cot2\theta=\dfrac{17-4}{-16}$
记  $k=tan\theta$化简得$8k^2+13k-8=0$即  $k=-\dfrac{13}{16}\pm\dfrac{5\sqrt{17}}{16}$
故对称轴为$y=(-\dfrac{13}{16}\pm\dfrac{5\sqrt{17}}{16})(x-1)$对称中心为$(1,0)$
注:一般的$a_{11}x^2+a_{22}y^2+2a_{12}xy+2b_1x+2b_2y+c=0$
通过正交变换$(x,y)=(x^{'},y^{'})\cdot(\cos\theta,\sin\theta)$后$\cot2\theta=\dfrac{a_{11}-a_{22}}{2a_{12}}$

 

转载于:https://www.cnblogs.com/mathstudy/p/10758443.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值