Java实现笛卡尔积List<String> cartesianProduct(List<List<String>> wordLists)

 

 

笛卡尔积

两套的笛卡尔乘积通过表示×并定义为:

A×B = {(a,b)| aϵA和bϵB}

 

笛卡尔乘积是两个集合的乘积,以形成所有有序对的集合。有序对的第一个元素属于第一组,第二对则属于第二组。举个例子

假设A = {狗,猫}
         B = {肉,牛奶}然后, 
         A×B = {(狗,肉),(猫,牛奶),(狗,奶),(猫,肉)}

带有实例的笛卡尔积

在这里,将集合AB相乘得到笛卡尔积A×B。的第一个元素A×B是一个有序对(狗,肉),其中属于集合。类似地,有序对的第二个元素Meat属于集合B。这对于A×B的所有元素(有序对)都是如此

笛卡尔积示例

例1:笛卡尔积的实际例子

如果X是x平面上的点集合,而Y 是y平面上的点集合,则X ×Y表示XY平面上的点。

范例#2

假设两组A = {a,b}和B = {1,2,3}。找到A×B和B×A。

这里,
A = {a,b}
B = {1,2,3}
现在,
A×B = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}
B×A = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

两套笛卡尔积

例子#3

如果A×B = {(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)}。查找A和B。

由于集合A仅包含每个有序对的第一个元素,

A = {x,y}

由于集合B仅包含有序对的第二个元素,

B = {1,2,3}

 

我们在两个集合中都排除重复元素(因为集合只能包含唯一元素)。

3套的笛卡尔积

对于三组A, Ç,的笛卡儿积A, Ç由表示×× Ç并定义为:

A×B×C = {(p,q,r)| pϵA和qϵB和rϵC}

例子#4

假设两组A = {-1,-2},B = {1,2}和C = {0}。找出A×B×C。

这里,
A = {-1,-2}
B = {1,2}
C = {0}
现在,
A×B = {(-1,1,0),(-1,2,0),(-2,1,0),(-2,2,0)}

笛卡尔积的要点

空集的笛卡尔积

如果两个集合中的任何一个为空,则这两个集合的笛卡尔积也为空。

如果A = {1,2}并且B = ϕ。然后,A×B = ϕB×A = ϕ

非交换性

对于两个唯一且非空的集合ABA×B不等于B×A

如果A = {a,b}B = {1,2,3} ,

A×B = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}
B×A = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

在这里,A×B≠B×A

交换性的条件

对于两个集合A和B,如果满足以下任一条件,则两个集合A×B和B×A的笛卡尔积相等:

  • 两组中的任何一个为空
  • 两组相等

如果A = {1,2}并且B = ϕ。然后,

       A×B = ϕ 
       B×A = ϕ
因此, A×B = B×A

如果A = B = {1,2}, 那么,

A×B = {(1,2 ,,(2,2),(2,1),(2,2)}
B×A = {(1,2 ,,(2,2),(2,1),(2,2)}
A×A = A 2 = {(1,2 ,,(2,2),(2,1),(2,2)}
B×B = B 2 = {(1,2),(2,2),(2,1),(2,2)}
因此, A×B = B×A = A 2 = B 2

 

 

 

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;

public class CartesianProductDemo2 {

	public static void main(String[] args) {
		List<List<String>> wl = new ArrayList<List<String>>();
		List<String> colorList = Arrays.asList("A", "B", "C");
		wl.add(colorList);
		List<String> sizeList = Arrays.asList("1", "2");
		wl.add(sizeList);
		List<String> placeList = Arrays.asList("#", "$");
		wl.add(placeList);

		List<String> descartesList = cartesianProduct(wl);
		descartesList.forEach(System.out::println);
	}

	public static List<String> cartesianProduct(List<List<String>> wordLists) {

		List<String> cp = wordLists.get(0);

		for (int i = 1; i < wordLists.size(); i++) {
			List<String> secondList = wordLists.get(i);
			List<String> combinedList = cp.stream().flatMap(s1 -> secondList.stream().map(s2 -> s1 + s2))
					.collect(Collectors.toList());
			cp = combinedList;

		}
		return cp;
	}
}

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页