1582. 二进制矩阵中的特殊位置

给你一个大小为 rows x cols 的矩阵 mat,其中 mat[i][j] 是 0 或 1,请返回 矩阵 mat 中特殊位置的数目 。

特殊位置 定义:如果 mat[i][j] == 1 并且第 i 行和第 j 列中的所有其他元素均为 0(行和列的下标均 从 0 开始 ),则位置 (i, j) 被称为特殊位置。

 

示例 1:

输入:mat = [[1,0,0],
            [0,0,1],
            [1,0,0]]
输出:1
解释:(1,2) 是一个特殊位置,因为 mat[1][2] == 1 且所处的行和列上所有其他元素都是 0

示例 2:

输入:mat = [[1,0,0],
            [0,1,0],
            [0,0,1]]
输出:3
解释:(0,0), (1,1) 和 (2,2) 都是特殊位置

示例 3:

输入:mat = [[0,0,0,1],
            [1,0,0,0],
            [0,1,1,0],
            [0,0,0,0]]
输出:2

示例 4:

输入:mat = [[0,0,0,0,0],
            [1,0,0,0,0],
            [0,1,0,0,0],
            [0,0,1,0,0],
            [0,0,0,1,1]]
输出:3

 

提示:

  • rows == mat.length
  • cols == mat[i].length
  • 1 <= rows, cols <= 100
  • mat[i][j] 是 0 或 1

public class Solution1582 {

	public int numSpecial(int[][] mat) {
		int[] rowsum = new int[mat.length];
		int[] colsum = new int[mat[0].length];
		int num = 0;
		for (int i = 0; i < mat.length; i++) {
			for (int j = 0; j < mat[0].length; j++) {
				rowsum[i] = rowsum[i] + mat[i][j];
				colsum[j] = colsum[j] + mat[i][j];
			}
		}
		for (int i = 0; i < mat.length; i++) {
			for (int j = 0; j < mat[0].length; j++) {
				if (mat[i][j] == 1 && rowsum[i] == 1 && colsum[j] == 1) {
					num++;
				}
			}
		}

//		System.out.println(Arrays.toString(rowsum));
//		System.out.println(Arrays.toString(colsum));
		return num;
	}

	public static void main(String[] args) {

		Solution1582 s = new Solution1582();

		// int[][] mat = { { 1, 0, 0 }, { 0, 0, 1 }, { 1, 0, 0 } };

		int[][] mat = { { 0, 0 }, { 0, 0 }, { 1, 0 } };
		System.out.println(s.numSpecial(mat));
	}
}

 

在MATLAB二进制矩阵(即只有0和1的矩阵)的求逆可能不像普通实数矩阵那样直接使用inv()函数,因为二进制矩阵并不总是方阵,且它们不满足实数域的除法运算规则。对于这种特殊矩阵,通常有几种处理方式: 1. **如果矩阵是方阵并且满秩(即行秩等于列秩且非奇异)**: 可以先将二进制矩阵转换为等价的实数矩阵,例如,通过将每个1替换为正数(如1.0),将0替换为足够小的正数(通常用eps,MATLAB的机器精度)。然后使用inv函数求逆。 ```matlab binaryMatrix = [binary_elements]; epsilon = eps; realMatrix = binaryMatrix + epsilon * (1 - binaryMatrix); invRealMatrix = inv(realMatrix); ``` 2. **如果矩阵不是方阵或不可逆**: 如果矩阵是行向量(行数大于列数)或列向量(列数大于行数),则无法求逆。如果是方阵但不满秩,那么它的逆矩阵不存在。 ```matlab if size(binaryMatrix, 1) ~= size(binaryMatrix, 2) error('Non-square matrix cannot be inverted.'); end ``` 3. **二进制矩阵特有的操作**: 对于某些特定的二进制矩阵,可能存在算法可以直接处理,例如,如果它是布尔矩阵(二值逻辑矩阵),可能需要应用布尔代数的原理。然而,这些方法通常涉及到复杂的逻辑运算而非简单的矩阵运算。 如果你遇到的是一个实际应用的问题,并且矩阵确实满足条件能被转化为实数矩阵求逆,上述方法是可取的。对于特殊情况,建议查阅MATLAB文档或搜索相关的数学资料以获取更精确的方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值