标题:有理数类
有理数就是可以表示为两个整数的比值的数字。一般情况下,我们用近似的小数表示。但有些时候,不允许出现误差,必须用两个整数来表示一个有理数。
这时,我们可以建立一个“有理数类”,下面的代码初步实现了这个目标。为了简明,它只提供了加法和乘法运算。
class Rational { private long ra; private long rb; private long gcd(long a, long b){ if(b==0) return a; return gcd(b,a%b); } public Rational(long a, long b){ ra = a; rb = b; long k = gcd(ra,rb); if(k>1){ //需要约分 ra /= k; rb /= k; } } // 加法 public Rational add(Rational x){ return ________________________________________; //填空位置 } // 乘法 public Rational mul(Rational x){ return new Rational(ra*x.ra, rb*x.rb); } public String toString(){ if(rb==1) return "" + ra; return ra + "/" + rb; } }
使用该类的示例:
Rational a = new Rational(1,3); Rational b = new Rational(1,6); Rational c = a.add(b); System.out.println(a + "+" + b + "=" + c);
请分析代码逻辑,并推测划线处的代码,通过网页提交 注意:仅把缺少的代码作为答案,千万不要填写多余的代码、符号或说明文字!!
分析:
我们知道,分数的加法是两个数的分母相乘得到乘积的分数,两个数的分子分别乘以对方的分母然后求和是乘积的分子,如:
所要补充的代码部分即是这个意思,在Rational(long a, long b)中,a是分子,b是分母。
答案:new Rational(this.rax.rb + this.rbx.ra, rb*x.rb)
注意:不要多输入一个“;”! 当然,上面的“this”关键字也可以不加上。
可以运行的代码如下:
public class Main {
static class Rational
{//内部类
private long ra;
private long rb;
//求两个数的最大公约数
private long gcd(long a, long b){
if(b==0) return a;
return gcd(b,a%b);
}
public Rational(long a, long b){//构造器
ra = a;
rb = b;
long k = gcd(ra,rb);
if(k>1){ //需要约分
ra /= k;
rb /= k;
}
}
// 加法
public Rational add(Rational x){
return new Rational(this.ra*x.rb + this.rb*x.ra, rb*x.rb); //填空位置
}
// 乘法
public Rational mul(Rational x){
return new Rational(ra*x.ra, rb*x.rb);
}
public String toString(){
if(rb==1) return "" + ra;
return ra + "/" + rb;
}
}
public static void main(String[] args) {
Rational a = new Rational(1,3);
Rational b = new Rational(1,6);
Rational c = a.add(b);
System.out.println(a + "+" + b + "=" + c);
}
}