xdoj
Aloesshine
acm小白
展开
-
判断点是否在三角形内部(xdoj 1125)
先贴题目:xdoj1125思路:给了三角形的三个顶点a,b,c,和一个点x; 判断abc的面积 是否= xab的面积+xbc的面积+xac的面积;思路很简单。。。关键在于怎么求三角形面积。 一开始我的方法是:割补法,所求面积=矩形面积-三个直角三角形的面积。然而我还是太天真。。。。在wa的我快哭了的时候,终于发现,这个方法解决不了钝角三角形啊啊啊啊啊啊啊~~!!于是原创 2015-08-26 14:54:57 · 498 阅读 · 0 评论 -
x^n+y^n求解(xdoj 1115)
上题:西电oj 1115 : http://acm.xidian.edu.cn/problem.php?id=1115 设 a=x+y ,b=x*y 如果你想把x和y分别求出来,那你就输了。。。 本人历经千辛万苦,花费了大量比赛时的宝贵时间,用完了一沓草稿纸。。终于。。。。。。。还是没把它推出来。。。。 比赛结束得到某大神指点豁然开朗。。。膜拜一下,漂亮的结果! f(原创 2015-08-26 15:16:31 · 1435 阅读 · 0 评论 -
内角均为120度六边形面积求解(xdoj 1118)
上题:西电oj 1118 : http://acm.xidian.edu.cn/problem.php?id=1118内角均为120度的六边形不一定是正六边形!! 内角均为120度的六边形不一定是正六边形!! 内角均为120度的六边形不一定是正六边形!! 重要的事情说三遍~!内角均为120度的六边形的特点:对边的差相等面积求法: 延长三边交于三点,得到正三角形 六边形面积=大正三角形面积-原创 2015-08-28 19:36:06 · 1447 阅读 · 0 评论 -
n的m次方的最高位c++求法(xdoj 1029)
先贴一道题 西电oj 1029 http://acm.xidian.edu.cn/problem.php?id=1029 这道题中需要用到解2的n次方的最高位的方法。 先讲正题,最后讲这个题的题解。long long int x=n^m; 式子两边同时取lg lg(x)=m*lg(n); x=10^(m*lg(n)); 10的整数次方的最高位一定是1,所以x的最高位原创 2015-08-14 13:32:38 · 1442 阅读 · 0 评论 -
数的拆分 递归做法(xdoj 1096)
比赛时候看到这道题的我的内心是崩溃的啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 清晰的记得数据结构课上老师一步一步给推过这个问题的递推式,然而我忘记了啊啊啊啊啊啊啊啊啊啊啊啊 果然出来混都是要还的,不好好听课的结果就是只能自己手推一遍。。。。好了进入正题。先贴题目 西电oj 1096 http://acm.xidian.edu.cn/problem.php?id=1096先举几个例原创 2015-08-14 17:52:24 · 813 阅读 · 0 评论 -
最大连续子序列和(xdoj 1079)
惯例先贴题目:西电oj 1079 http://acm.xidian.edu.cn/problem.php?id=1079最大连续子序列和的标准算法:时间复杂度o(n) 设所给序列为a[n] 定义sum[i]为以i结尾的最大连续子区间和, 易找到递推关系sum[i]=max(0,sum[n-1])+a[i] 所以只需要用for循环扫描一遍。for(int i=1;i<=n;i++){原创 2015-08-15 23:53:15 · 921 阅读 · 0 评论