编译原理 —— DFA的化简

本文通过两个DFA化简的实际案例,详细介绍了如何通过划分状态集、检查输入映射并逐步合并等步骤,将DFA减少至状态最少且无多余或等价状态的形式,旨在帮助理解DFA最小化的基本原理和实践操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个例子

作者:深入了解一下
链接:https://www.zhihu.com/question/39767421/answer/338794446
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

在这里插入图片描述


DFA 的化简

任何正规语言都有一个唯一的状态数目最少的DFA

DFA M的化简是指:寻找一个状态数比M少的DFA M’,使得L(M)=L(M’)

有穷自动机的多余状态:从自动机的开始状态出发,任何可识别的输入串也不能到达的状态

化简了的DFA M’ 满足两个条件:

没有多余状态 ;
没有两个状态是等价的。

求解步骤

① 将DFA M的状态集Q分划成两个子集:终态集和非终态集;

② 对每个子集G,如果面对某个输入符号得到的后继状态不属于同一个子集,则将G进一步划分;

③ 重复②直到不再产生新划分;

④ 在每个子集中选一个状态作代表,消去其他状态,得到最少状态的等价DFA M’。

示例1

将下图的 DFA 最小化

在这里插入图片描述

解:根据规则 ① ,将DFA M的状态集Q分划成两个子集

∏ =({A,B,C,D},{E})
根据规则 ② ,因为{ A , B , C , D } a = { B } ⊆ { A , B , C , D } {A,B,C,D}_a={B}⊆{A,B,C,D}{A,B,C,D}
a

={B}⊆{A,B,C,D}, 而{ A , B , C , D } b = { C , D , E } ⊄ { A , B , C , D } {A,B,C,D}_b={C,D,E}⊄{A,B,C,D}{A,B,C,D}
b

={C,D,E}⊄{A,B,C,D}。因为{ A , B , C } b ⊆ { A , B , C , D } {A,B,C}_b⊆{A,B,C,D}{A,B,C}
b

⊆{A,B,C,D},{ D } b ⊆ { E } {D}_b⊆{E}{D}
b

⊆{E},故将{ A , B , C , D } {A,B,C,D}{A,B,C,D} 划分为{ A , B , C } {A,B,C}{A,B,C}和{ D } {D}{D}

∏ =({A,B,C},{D},{E})
根据规则 ② ,因为{ A , B , C } a = { B } ⊆ { A , B , C } {A,B,C}_a={B}⊆{A,B,C}{A,B,C}
a

={B}⊆{A,B,C}, 而{ A , B , C } b = { C , D } ⊄ { A , B , C } ⊄ { D } {A,B,C}_b={C,D}⊄{A,B,C}⊄{D}{A,B,C}
b

={C,D}⊄{A,B,C}⊄{D}。因为{ A , C } b ⊆ { A , B , C } {A,C}_b⊆{A,B,C}{A,C}
b

⊆{A,B,C},{ B } b ⊆ { D } {B}_b⊆{D}{B}
b

⊆{D},故将{ A , B , C } {A,B,C}{A,B,C} 划分为{ A , C } {A,C}{A,C}和{ B } {B}{B}

∏ =({A,C},{B},{D},{E})
根据规则 ② ,因为{ A , C } a = { B } ⊆ { B } ⊄ { D } ⊄ { E } {A,C}_a={B}⊆{B}⊄{D}⊄{E}{A,C}
a

={B}⊆{B}⊄{D}⊄{E}, 而{ A , C } b ⊆ { C } ⊆ { A , C } {A,C}_b⊆{C}⊆{A,C}{A,C}
b

⊆{C}⊆{A,C}。对子集{ A , C } {A,C}{A,C},输入后得到的后继状态属于同一个子集{ A , C } {A,C}{A,C},故不再进行划分

∏ =({A,C},{B},{D},{E})
根据规则 ③ ,选择 A AA 作为 { A , C } {A,C}{A,C}的代表,将状态 C CC 从状态转换图删去,并将原来引向 C CC 的弧都引至 A AA,这样得到化简后的 DFA M’

∏ =({A},{B},{D},{E})

在这里插入图片描述

示例2

将下图的 DFA 最小化

在这里插入图片描述

解:

根据规则 ① ,将DFA M的状态集Q分划成两个子集

∏ =({0},{1,2})
根据规则 ② ,因为{ 1 , 2 } l = { 2 } ⊆ { 1 , 2 } {1,2}_l={2}⊆{1,2}{1,2}
l

={2}⊆{1,2}, 而{ 1 , 2 } d ⊆ { 2 } ⊆ { 1 , 2 } {1,2}_d⊆{2}⊆{1,2}{1,2}
d

⊆{2}⊆{1,2}。对子集{ 1 , 2 } {1,2}{1,2},输入后得到的后继状态属于同一个子集{ 1 , 2 } {1,2}{1,2},故不再进行划分

∏ =({0},{1,2})
根据规则 ③ ,选择 1 11 作为 { 1 , 2 } {1,2}{1,2}的代表,将状态 2 22 从状态转换图删去,并将原来引向 2 22 的弧都引至 1 11,这样得到化简后的 DFA M’

∏ =({0},{1})
在这里插入图片描述

1. 实验内容 每一个正规集都可以由一个状态数最少的DFA所识别,这个DFA是唯一的(不考虑同构的情况)。任意给定的一个DFA,根据以下算法设计一个C程序,将该DFA 化简为与之等价的最简DFA。 2. 实验设计分析 2.1 实验设计思路 根据实验指导书和书本上的相关知识,实现算法。 2.2 实验算法 (1)构造具有两个组的状态集合的初始划分I:接受状态组 F 和非接受状态组 Non-F。 (2)对I采用下面所述的过程来构造新的划分I-new. For I 中每个组G do Begin 当且仅当对任意输入符号a,状态s和读入a后转换到I的同一组中; /*最坏情况下,一个状态就可能成为一个组*/ 用所有新形成的小组集代替I-new中的G; end (3)如果I-new=I,令I-final=I,再执行第(4)步,否则令I=I=new,重复步骤(2)。 (4)在划分I-final的每个状态组中选一个状态作为该组的代表。这些代表构成了化简后的DFA M'状态。令s是一个代表状态,而且假设:在DFA M中,输入为a时有从s到t转换。令t所在组的代表是r,那么在M’中有一个从s到r的转换,标记为a。令包含s0的状态组的代表是M’的开始状态,并令M’的接受状态是那些属于F的状态所在组的代表。注意,I-final的每个组或者仅含F中的状态,或者不含F中的状态。 (5)如果M’含有死状态(即一个对所有输入符号都有刀自身的转换的非接受状态d),则从M’中去掉它;删除从开始状态不可到达的状态;取消从任何其他状态到死状态的转换。 。。。。。。
1. 实验内容 每一个正规集都可以由一个状态数最少的DFA所识别,这个DFA是唯一的(不考虑同构的情况)。任意给定的一个DFA,根据以下算法设计一个C程序,将该DFA 化简为与之等价的最简DFA。 2. 实验设计分析 2.1 实验设计思路 根据实验指导书和书本上的相关知识,实现算法。 2.2 实验算法 (1)构造具有两个组的状态集合的初始划分I:接受状态组 F 和非接受状态组 Non-F。 (2)对I采用下面所述的过程来构造新的划分I-new. For I 中每个组G do Begin 当且仅当对任意输入符号a,状态s和读入a后转换到I的同一组中; /*最坏情况下,一个状态就可能成为一个组*/ 用所有新形成的小组集代替I-new中的G; end (3)如果I-new=I,令I-final=I,再执行第(4)步,否则令I=I=new,重复步骤(2)。 (4)在划分I-final的每个状态组中选一个状态作为该组的代表。这些代表构成了化简后的DFA M'状态。令s是一个代表状态,而且假设:在DFA M中,输入为a时有从s到t转换。令t所在组的代表是r,那么在M’中有一个从s到r的转换,标记为a。令包含s0的状态组的代表是M’的开始状态,并令M’的接受状态是那些属于F的状态所在组的代表。注意,I-final的每个组或者仅含F中的状态,或者不含F中的状态。 (5)如果M’含有死状态(即一个对所有输入符号都有刀自身的转换的非接受状态d),则从M’中去掉它;删除从开始状态不可到达的状态;取消从任何其他状态到死状态的转换。 。。。。。。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值