46、使用EFK堆栈进行集中式日志记录与微服务监控

使用EFK堆栈进行集中式日志记录与微服务监控

1. 配置Kibana仪表盘

在Kibana中进行日志分析前,我们可以先配置一个仪表盘。具体操作步骤如下:
1. 点击“Save and go to Dashboard”按钮,此时会呈现一个新的仪表盘。
2. 点击右上角的“Save”按钮,为仪表盘命名,例如“hands - on - dashboard”,再次点击“Save”保存。之后,我们可以通过汉堡菜单中的“Dashboard”选项随时回到这个仪表盘。Kibana有众多分析日志记录的功能,可参考 这里 进行探索。

2. 发现微服务的日志记录

为了使用Kibana查找微服务的日志记录,我们需要先创建一些日志记录。以下是具体步骤:
- 创建日志记录
1. 获取访问令牌:

ACCESS_TOKEN=$(curl -k https://writer:secret - writer@minikube.me/oauth2/token -d grant_type=client_credentials -d scope="product:read product:write" -s | jq .access_token -r)
echo ACCESS_TOKEN=$ACCESS_TOKEN
2. 创建一个产品:
内容概要:本文围绕“蒙特卡洛模拟法计算电动汽车充电负荷”的研究主题,提供了基于Matlab的代码实现方案。通过蒙特卡洛方法模拟大量电动汽车的充电行为,综合考虑用户出行规律、充电起止时间、充电功率等随机因素,对充电负荷进行概率性建模仿真分析,从而实蒙特卡洛模拟法计算电动汽车充电负荷研究(Matlab代码实现)现对区域电动汽车充电负荷的准确预测统计特性评估。该方法有助于提升电网对电动汽车接入的承载能力评估精度,支撑有序充电管理和电网规划。文中还提及多个相关电力系统优化领域的Matlab/PYTHON仿真资源,涵盖微电网调度、综合能源系统、状态估计、强化学习控制等方向,体现出较强的技术综合性工程实用性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网、能源管理等相关领域的工程技术人员。; 使用场景及目标:①掌握蒙特卡洛方法在电力负荷预测中的应用原理实现步骤;②构建电动汽车充电负荷模型,支持电网侧影响分析调度优化;③借鉴文中提供的多种仿真案例,拓展至微电网、综合能源系统等复杂场景的研究开发;④结合团队提供的丰富资源链接,加速科研项目中的算法验证系统仿真。; 阅读建议:建议读者结合文档中提到的网盘资源,下载并运行相关Matlab代码,通过修改参数、调试模型加深对蒙特卡洛模拟流程的理解。同时可参考文中列举的其他研究方向,寻找交叉创新点,提升自身科研效率技术水平。
内容概要:本文详细介绍了一个基于Java和Vue的区块链电子投票防篡改系统的设计实现,涵盖了项目背景、目标、技术架构、核心功能模块、数据库设计、前后端代码实现及部署方案。系统利用区块链的去中心化、不可篡改和可追溯特性,结合Spring Boot后端框架Vue前端框架,构建了一个安全、透明、高效的电子投票平台。核心功能包括用户身份认证、投票判重、智能合约自动计票、区块链数据存储同步、实时统计结果公示、审计日志等,并通过完整的代码示例展示了前后端交互逻辑区块链底层实现。; 适合人群:具备一定Java和Vue开发基础的软件工程师、全栈开发者、区块链技术爱好者,以及从事电子政务、数字治理、信息安全等相关领域的技术人员。; 使用场景及目标:①应用于学校选举、社区自治、企业股东会、政府公共事务决策等需要高可信度投票的场景;②学习如何将区块链技术主流Web技术栈(Java+Vue)融合,掌握防篡改系统的设计思路实现方法;③作为可二次开发的开源模板,用于构建定制化的去中心化投票或数据存证系统。; 阅读建议:建议读者结合文档中的代码示例数据库设计,搭建本地运行环境进行实践操作,重点关注区块链数据结构、智能合约逻辑、前后端分离通信机制及安全防护设计,深入理解系统在高并发、隐私保护数据一致性方面的技术解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值