已知次数界分别为n,mn,mn,m的多项式F(x)F(x)F(x)与G(x)G(x)G(x),求解次数界为n−mn-mn−m的两个多项式Q(x)Q(x)Q(x)与R(x)R(x)R(x)使得
F(x)=G(x)Q(x)+R(x)F(x)=G(x)Q(x)+R(x)F(x)=G(x)Q(x)+R(x)
我们令
Ar(x)=xDeg(A)A(x−1)A_r(x)=x^{\text{Deg}(A)}A(x^{-1})Ar(x)=xDeg(A)A(x−1)
很明显这是将原多项式的系数翻转,证明如下
假设
A(x)=∑i=0Deg(A)aixiA(x)=\sum_{i=0}^{\text{Deg(A)}}a_ix^iA(x)=i=0∑Deg(A)aixi
则
xDeg(A)A(x−1)=xDeg(A)∑i=0Deg(A)ai(x−1)i=∑i=0Deg(A)aixDeg(A)−ix^{\text{Deg}(A)}A(x^{-1})=x^{\text{Deg}(A)}\sum_{i=0}^{\text{Deg(A)}}a_i(x^{-1})^i=\sum_{i=0}^{^{\text{Deg}(A)}}a_ix^{\text{Deg}(A)-i}xDeg(A)A(x−1)=xDeg(A)i=0∑Deg(A)ai(x−1)i=i=0∑Deg(A)aix