多项式算法3:多项式除法

本文介绍了如何通过多项式翻转系数和模运算求解多项式除法问题,详细阐述了从F(x)=G(x)Q(x)+R(x)到Qr(x)≡Fr(x)Gr−1(x)(modxn−m+1)的过程,涉及系数翻转和逆元的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知次数界分别为n,mn,mn,m的多项式F(x)F(x)F(x)G(x)G(x)G(x),求解次数界为n−mn-mnm的两个多项式Q(x)Q(x)Q(x)R(x)R(x)R(x)使得
F(x)=G(x)Q(x)+R(x)F(x)=G(x)Q(x)+R(x)F(x)=G(x)Q(x)+R(x)

我们令

Ar(x)=xDeg(A)A(x−1)A_r(x)=x^{\text{Deg}(A)}A(x^{-1})Ar(x)=xDeg(A)A(x1)

很明显这是将原多项式的系数翻转,证明如下

假设
A(x)=∑i=0Deg(A)aixiA(x)=\sum_{i=0}^{\text{Deg(A)}}a_ix^iA(x)=i=0Deg(A)aixi


xDeg(A)A(x−1)=xDeg(A)∑i=0Deg(A)ai(x−1)i=∑i=0Deg(A)aixDeg(A)−ix^{\text{Deg}(A)}A(x^{-1})=x^{\text{Deg}(A)}\sum_{i=0}^{\text{Deg(A)}}a_i(x^{-1})^i=\sum_{i=0}^{^{\text{Deg}(A)}}a_ix^{\text{Deg}(A)-i}xDeg(A)A(x1)=xDeg(A)i=0Deg(A)ai(x1)i=i=0Deg(A)aix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值