深度学习
wayneholmes
这个作者很懒,什么都没留下…
展开
-
深度学习网络调参技巧
转自:炼丹实验室之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得。不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要。同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流。好的实验环境是成功的一半由于深度学习实验超参众多,代码风格良好的...转载 2019-04-23 16:34:33 · 227 阅读 · 0 评论 -
一些算子及不同类型的卷积
转自:https://www.cnblogs.com/noticeable/p/9197640.html1、什么是算子及不同算子的介绍 算子是一个函数空间到函数空间上的映射O:X→X。广义上的算子可以推广到任何空间,如内积空间等。 在图像处理中,通常会使用一些不同的算子来对图像进行处理。下面介绍一下图像处理中常用的一些算子。1.相关算子(Correlation Oper...转载 2019-04-23 16:43:06 · 1030 阅读 · 0 评论 -
详解深度学习中的Normalization,BN/LN/WN
转自:https://zhuanlan.zhihu.com/p/33173246深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Batch Norm 大法自 2015 年由Google 提出之后,就成为深度学习必备之神器。自 BN 之后, Layer Norm / Weight Norm / Cosine Norm 等也横空...转载 2019-04-23 16:51:39 · 334 阅读 · 0 评论 -
模型性能估计
转自:https://zhuanlan.zhihu.com/p/41296455在移动设备上进行深度学习时,模型预测的好坏并不是唯一的考虑因素。你还需要担心:· 模型在应用程序包中占用的空间量- 单个模型有可能为应用程序的下载大小增加100个MB· 它在运行时占用的内存量- 在iPhone和iPad上,GPU可以使用设备中的所有RAM,但这仍然只有几GB,当你的可用内存耗尽时,应用程...转载 2019-06-20 09:07:05 · 799 阅读 · 0 评论 -
26种神经网络激活函数可视化
在本文中,作者对包括 Relu、Sigmoid 在内的 26 种激活函数做了可视化,并附上了神经网络的相关属性,为大家了解激活函数提供了很好的资源。在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为。正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分的)。此外,复杂的激活函数也许产生一些梯度消...转载 2019-08-01 09:25:10 · 612 阅读 · 0 评论