
机器学习
文章平均质量分 66
Altair_Alpha_
这个作者很懒,什么都没留下…
展开
-
【机器学习】《统计学习方法》学习笔记 第四章 朴素贝叶斯法
第四章 朴素贝叶斯法简单理解:已有的大量样本告诉我们:“好吃的瓜”(类别)大部分(具体来说要用一个概率分布描述)是无籽的、甜的(特征),现在一个新样本过来,我们只能观察到它的特征是有/无籽的、甜/不甜的,要由此判断它是好吃还是不好吃的。一句话说,就是通过大量数据的统计规律得到由类别推特征的概率分布,然后通过贝叶斯公式对新样本由特征推类别。设输入特征向量为 XXX ,类别为 YYY ,所求概率分布为 P(X=x∣Y=ck)P(X = x \mid Y = c_k)P(X=x∣Y=ck),由于 X原创 2021-08-29 22:45:47 · 170 阅读 · 0 评论 -
【机器学习】《统计学习方法》学习笔记 第三章 k近邻法
第三章 kkk 近邻法(KNN)多分类模型,思路是将最近的 NNN 个邻居的分类值中的多数作为自己的分类值。没有显式的学习过程。三个基本要素:距离度量、kkk 值选择和分类决策规则。距离度量:一般形式,Minkowski距离的定义为Lp(xi,xj)=(∑l=1n∣xi(l)−xj(l)∣p)1pL_p(x_i, x_j) = \left (\sum_{l=1}^n \mid x_i^{(l)} - x_j^{(l)} \mid^p \right)^\frac{1}{p}Lp(x原创 2021-08-21 10:51:40 · 185 阅读 · 0 评论 -
【机器学习】《统计学习方法》学习笔记 第二章 感知机
第二章 感知机二分类线性模型,输入实例的特征向量,输出+1,-1二值代表的类别。公式:f(x)=sign(ω⋅x+b)f(x) = sign(\omega \cdot x + b)f(x)=sign(ω⋅x+b),sign(x)sign(x)sign(x) 函数将正负值规约到±1。本质是用一个 NNN 维的超平面将特征空间划分为正负两部分。ω,b\omega, bω,b 就是超平面的法向量和截距。损失函数:误分类的点个数不是 ω,b\omega, bω,b 的连续可导函数,不易优化。原创 2021-08-19 20:03:54 · 135 阅读 · 0 评论 -
【机器学习】《统计学习方法》学习笔记 第一章
最近开始学习机器学习方向的知识,开个新系列记录一下。主要基于笔者个人直白的理解总结书中的知识要点和内在思路,不保证覆盖全面,如有错误也请不吝赐教✌学习教材:《统计学习方法》 第二版 李航第一章 统计学习及监督学习方法概论统计学习(机器学习)的目标:给定某个输入,回答基于实际场景的“正确的”的输出。为了能对所有输入达成这样的效果,实际上需要找出一个输入集对输出集的映射关系(称为模型,以函数或概率分布描述)。方法:给定足量的数据(即正确的输入输出关系样本)。将输入输出抽象为一系列抽象的特征原创 2021-08-19 19:58:38 · 151 阅读 · 0 评论