最长递增子序列问题的求解

最长递增子序列问题的描述

设L=(a1,a2,…,an)是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=(aK1,ak2,…,akm),其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。

算法1:转化为LCS问题求解

设序列X=(b1,b2,…,bn)是对序列L=(a1,a2,…,an)按递增排好序的序列。那么显然X与L的最长公共子序列即为L的最长递增子序列。这样就把求最长递增子序列的问题转化为求最长公共子序列问题LCS了。最长公共子序列问题用动态规划的算法可解,时间复杂度为O(n2)。

算法2:动态规划法

设f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程:
-  若存在就j<i且aj<ai,则f(i)=max{f(j)+1}, 其中aj<ai 
-  若不存在j<i且aj<ai,则f(i)=1
这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<i且aj<ai。如果这样的元素存在,那么对所有aj都有一个以aj为末元素的最长递增子序列的长度f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1。如果这样的元素不存在,那么ai自身构成一个长度为1的以ai为末元素的递增子序列。

算法2的java代码实现:

public void lis(float[] L)
  {
         int n = L.length;
         int[] f = new int[n];//用于存放f(i)值;
         f[0]=1;//以第a1为末元素的最长递增子序列长度为1;
         for(int i = 1;i<n;i++)//循环n-1次
         {
                f[i]=1;//f[i]的最小值为1;
                for(int j=0;j<i;j++)//循环i 次
                {
                       if(L[j]<L[i]&&f[j]>f[i]-1)
                              f[i]=f[j]+1;//更新f[i]的值。
                }
         }
         System.out.println(f[n-1]);            
              }
算法2的改进:

在第二种算法中,在计算每一个f(i)时,都要找出最大的f(j)(j<i)来,由于f(j)没有顺序,只能顺序查找满足aj<ai最大的f(j),如果能将让f(j)有序,就可以使用二分查找,这样算法的时间复杂度就可能降到O(nlogn)。于是想到用一个数组B来存储“子序列的”最大递增子序列的最末元素,即有B[f(j)] = aj。在计算f(i)时,在数组B中用二分查找法找到满足j<i且B[f(j)]=aj<ai的最大的j,并将B[f[j]+1]置为ai。

java代码实现:

lis1(float[] L)
{
    int n = L.length;
    float[] B = new float[n+1];//数组B;
    B[0]=-10000;//把B[0]设为最小,假设任何输入都大于-10000;
    B[1]=L[0];//初始时,最大递增子序列长度为1的最末元素为a1
    int Len = 1;//Len为当前最大递增子序列长度,初始化为1;
    int p,r,m;//p,r,m分别为二分查找的上界,下界和中点;
    for(int i = 1;i<n;i++)
    {
        p=0;r=Len;
        while(p<=r)//二分查找最末元素小于ai+1的长度最大的最大递增子序列;
        {
           m = (p+r)/2;
           if(B[m]<L[i]) p = m+1;
           else r = m-1;
        }
        B[p] = L[i];//将长度为p的最大递增子序列的当前最末元素置为ai+1;
        if(p>Len) Len++;//更新当前最大递增子序列长度;


    }
    System.out.println(Len);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值