LightOJ-1024-高精度乘法和最小公倍数

这个题就是求一串数的最小公倍数,但是由于太多了,所以结果会很大,所以需要高精度乘法

#include <iostream>
#include <cmath>
#include <vector>
#include <cstring>
#include <cstdio>

using namespace std;

const int maxn=1e4+5;
int t,n,k,x;
vector<int> prime;
int vis[maxn];
int arr[maxn];
int ans[maxn];

void divid(int x)//唯一分解
{
    for(int i=0; i<prime.size(); i++)
    {
        if(x%prime[i]==0)
        {
            int num=0;
            while(x%prime[i]==0)
            {
                num++;
                x/=prime[i];
            }
            arr[i]=max(arr[i],num);//由于是求n个数的最小公倍数,所以每个质因数出现的次数应该是每个数分解后出现次数的最大值
        }
        if(x==1) break;
    }
}

int main()
{
    memset(vis,0,sizeof(vis));
    for(int i=2; i<=maxn; i++)//筛选素数
    {
        if(!vis[i])
        {
            prime.push_back(i);
            for(int j=i*2; j<=maxn; j+=i)
                vis[j]=1;
        }
    }
    scanf("%d",&t);
    while(t--)
    {
        memset(arr,0,sizeof(arr));
        memset(ans,0,sizeof(ans));
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&x);
            divid(x);
        }
        ans[0]=1;
        for(int i=0;i<=maxn;i++)
        {
            if(!arr[i]) continue ;//arr中储存的质因数出现的次数
            int val=1;
            for(int j=0;j<arr[i];j++)
                val*=prime[i];//算出这个质因数的值
            for(int j=0;j<1000;j++)
                ans[j]=ans[j]*val;//这个地方ans已经是分解完的数了,所以每位都要乘以新的质因数
            for(int j=0;j<1000;j++)
            {
                ans[j+1]+=ans[j]/10000;//将新加进去的质因数分解
                ans[j]=ans[j]%10000;
            }
        }
        printf("Case %d: ",++k);
        int i=1000;
        while(i>=0 && ans[i]==0) i--;//从后往前找到非零值
        printf("%d",ans[i--]);
        while(i>=0) printf("%04d",ans[i--]);//每个ans储存的是四位数,所以04d
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值