机器学习&模式识别
自在逍遥
@七牛云存储
展开
-
详解2D-PCA (二维PCA)
传统的一维PCA和LDA方法是在图像识别的时候基于图像向量,在这些人脸识别技术中,2D的人脸图像矩阵必须先转化为1D的图像向量,然后进行PCA或者LDA分析。缺点是相当明显的: 一、转化为一维之后,维数过大,计算量变大。 二、主成分分析的训练是非监督的,即PCA无法利用训练样本的类别信息。 三、识别率不是很高。本文介绍的是2DPCA,2DPCA顾名思义是利用图像的二维信息。原创 2013-06-14 18:09:50 · 25753 阅读 · 1 评论 -
手把手教你实现SVM算法(一)
什么是机器学习 (Machine Learning) 机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。机器学习的大致分类:1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类原创 2013-06-14 18:09:45 · 207359 阅读 · 18 评论 -
手把手教你实现SVM算法(二)
一.SMO算法的原理SMO算法和以往的一些SVM改进算法一样,是把整个二次规划问题分解为很多较易处理的小问题,所不同的是,只有SMO算法把问题分解到可能达到的最小规模:每次优化只处理两个样本的优化问题,并且用解析的方法进行处理。我们将会看到,这种与众不同的方法带来了一系列不可比拟的优势。对SVM来说,一次至少要同时对两个样本进行优化(就是优化它们对应的Lagrange乘子),这是因为等式约原创 2013-06-14 18:09:52 · 15751 阅读 · 4 评论 -
Python机器学习(一)--Numpy基础
2 NumPy-快速处理数据标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间。此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和原创 2014-06-30 13:03:19 · 13436 阅读 · 0 评论 -
Python机器学习(二)--kNN算法实现
一、KNN算法具体原理wiki的链接:http://zh.wikipedia.org/wiki/%E6%9C%80%E8%BF%91%E9%84%B0%E5%B1%85%E6%B3%95K-NN是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。k-近邻算法是所有的机器学习算法中最简单的之一:被分配的对象被列为了其邻域对象较多的类别的K近邻算法是最常见的(原创 2014-07-07 13:39:31 · 7780 阅读 · 1 评论 -
Python机器学习(三)--决策树算法
一、决策树原理 决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。 决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的类别值。决策树是一种知识表示形式,它是对所有样本数据的高度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。 决策树算法ID3的基本思想: 首先找出最有原创 2014-07-14 13:57:55 · 52880 阅读 · 14 评论