RNN资源博客 Recurrent Neural Network的经典论文、代码、课件、博士论文和应用汇总

这篇博客整理了关于Recurrent Neural Networks (RNN)的丰富资源,包括代码实现、理论讲解、讲座、书籍、网络变体、应用案例等,覆盖语言模型、语音识别、机器翻译等多个领域。
摘要由CSDN通过智能技术生成
转载自: RNN资源博客
字数1701 阅读5199 评论2

Awesome Recurrent Neural Networks

A curated list of resources dedicated to recurrent neural networks (closely related todeep learning).

Maintainers -Jiwon Kim,Myungsub Choi

We have pages for other topics:awesome-deep-vision,awesome-random-forest

Table of Contents

Codes

Theory

Lectures

Books / Thesis

Network Variants

Surveys

Applications

Language Modeling

Speech Recognition

Machine Translation

Conversation Modeling

Image Captioning

Video Captioning

Question Answering

Image Generation

Turing Machines

Robotics

Datasets

Codes

Theano- Python

Simple IPythontutorial on Theano

Deep Learning Tutorials

RNN for semantic parsing of speech

LSTM network for sentiment analysis

Keras: Theano-based Deep Learning Library

theano-rnnby Graham Taylor

Passage: Library for text analysis with RNNs

Caffe- C++ with MATLAB/Python wrappers

LRCNby Jeff Donahue

Torch- Lua

char-rnnby Andrej Karpathy : multi-layer RNN/LSTM/GRU for training/sampling from character-level language models

LSTMby Wojciech Zaremba : Long Short Term Memory Units to train a language model on word level Penn Tree Bank dataset

以下是几篇使用循环神经网络(Recurrent Neural NetworkRNN)进行股票价格预测的高引用论文: 1. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. 这篇经典论文提出了一种新的循环神经网络模型——长短时记忆网络(Long Short-Term Memory,LSTM),用于解决循环神经网络在长序列上的梯度消失问题。LSTM在很多序列预测任务上表现出色,包括股票价格预测。 2. Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. 这篇论文探讨了使用神经网络对季节性和趋势时间序列进行预测的问题,提出了一种基于循环神经网络的新方法,并在股票价格预测中进行了实验。 3. Zhang, G. P., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. 这篇综述性论文介绍了使用神经网络进行时间序列预测的研究进展,包括循环神经网络。论文讨论了神经网络在股票价格预测中的应用,并列举了多篇相关的研究论文。 4. Singh, P. K., & Kumar, S. (2018). Recurrent neural network based stock price prediction using financial news and technical indicators. Expert Systems with Applications, 107, 111-122. 这篇论文结合了股票市场的基本面和技术面因素,使用循环神经网络模型进行股票价格预测,并与传统的时间序列模型进行了比较。实验结果表明,循环神经网络模型在股票价格预测中具有更好的表现。 5. Zhang, H., Shen, H., Wang, Y., & Liu, Z. (2020). A hybrid stock price prediction model using RNN and particle swarm optimization. IEEE Access, 8, 44506-44515. 这篇论文提出了一种混合模型,将循环神经网络和粒子群优化算法相结合,用于股票价格预测。实验结果表明,该模型可以更准确地预测股票价格,并具有更强的泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值