Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).
Example 1:
Input: [3, 2, 1] Output: 1 Explanation: The third maximum is 1.
Example 2:
Input: [1, 2] Output: 2 Explanation: The third maximum does not exist, so the maximum (2) is returned instead.
Example 3:
Input: [2, 2, 3, 1] Output: 1 Explanation: Note that the third maximum here means the third maximum distinct number. Both numbers with value 2 are both considered as second maximum.
public class Solution {
public int thirdMax(int[] nums) {
PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
Set<Integer> set = new HashSet<>();
for(int i:nums){
if(!set.contains(i)){
pq.offer(i);
set.add(i);
if(pq.size()>3){
set.remove(pq.poll());
}
}
}
if(pq.size()<3){
while(pq.size()>1){
pq.poll();
}
}
return pq.peek();
}
}
总结:和堆排序相关的插入和删除都是log(n)量级。
public class Solution {
public int thirdMax(int[] nums) {
Integer max1 = null;
Integer max2 = null;
Integer max3 = null;
for (Integer n : nums) {
if (n.equals(max1) || n.equals(max2) || n.equals(max3)) continue;
if (max1 == null || n > max1) {
max3 = max2;
max2 = max1;
max1 = n;
} else if (max2 == null || n > max2) {
max3 = max2;
max2 = n;
} else if (max3 == null || n > max3) {
max3 = n;
}
}
return max3 == null ? max1 : max3;
}
}
总结:第三大,那就写三个变量存放前三大的数值。但是这种方法在第n大(n较大的时候)就不适用了。