聚类算法总结

基于划分的聚类

k-means:

优点:1,简单,易于理解和实现;2,时间复杂度低

缺点:

1kmeans要手工输入类数目,对初始值的设置很敏感;所以有了k-means++intelligentk-meansgenetick-means

2k-means对噪声和离群值非常敏感,所以有了k-medoidsk-medians

3k-means只用于numerical类型数据,不适用于categorical类型数据,所以k-modes

4k-means不能解决非凸(non-convex)数据,所以有了kernelk-means

5k-means主要发现圆形或者球形簇,不能识别非球形的簇。


K-medroids算法选取中心点的方式不同。优点是相对K-means对噪声点和离群点不敏感,缺点是计算量增大。

K-means++算法:距离已有聚类中心较远的点有更大的概率被选为初始聚类中心。

ISADATA:不要求聚类数目,原理直观,但是需要制定多个参数。


基于层次的聚类

优点:1,距离和规则的相似度容易定义,限制少;2,不需要预先制定聚类数;3,可以发现类的层次关系;4,可以聚类成其它形状

缺点:1,计算复杂度太高;2,奇异值也能产生很大影响;3,算法很可能聚类成链状 4,合并和聚类是不可逆的

基于密度的聚类

DBSCAN的优缺点:

优点:

1.K-means方法相比,DBSCAN不需要事先知道要形成的簇类的数量。

2.K-means方法相比,DBSCAN可以发现任意形状的簇类。

3.同时,DBSCAN能够识别出噪声点。

4.DBSCAN对于数据库中样本的顺序不敏感,即Pattern的输入顺序对结果的影响不大。但是,对于处于簇类之间边界样本,可能会根据哪个簇类优先被探测到而其归属有所摆动。

缺点:

1.DBScan不能很好反映高尺寸数据。

2.DBScan不能很好反映数据集变化的密度。

3.对于高维数据,点之间极为稀疏,密度就很难定义了。


  如果簇的密度变化很大,例如ABCD四个簇,AB的密度大大大于CD,而且AB附近噪音的密度与簇CD的密度相当,这是当MinPs较大时,无法识别簇CD,簇CDAB附近的噪音都被认为是噪音;当MinPs较小时,能识别簇CD,但AB跟其周围的噪音被识别为一个簇。


基于网格的聚类

利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构;

1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据

2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性


聚类算法是一种常用的无监督学习方法,可以将数据集分成若干个组,每个组内的数据具有相似性。下面是一些常用的聚类算法及对应实例代码。 1. K-Means算法 K-Means算法是一种基于距离的聚类算法,其核心思想是将数据集分成K个簇,使得每个数据点都属于离其最近的簇。K-Means算法的步骤如下: 1. 随机选择K个质心(簇中心)。 2. 将每个数据点分配到距离其最近的质心所在的簇中。 3. 重新计算每个簇的质心。 4. 重复步骤2和3,直到簇中心不再改变或达到最大迭代次数。 下面是K-Means算法的Python实现代码: ```python from sklearn.cluster import KMeans # 创建数据集 X = [[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]] # 创建K-Means模型 kmeans = KMeans(n_clusters=2) # 训练模型 kmeans.fit(X) # 预测结果 y_pred = kmeans.predict(X) # 输出聚类结果 print(y_pred) ``` 2. 层次聚类算法 层次聚类算法是一种划分聚类算法,其核心思想是从单个数据点开始,将最相似的点组合成一个簇,逐步合并成更大的簇,直到所有数据点都被合并到同一个簇中。层次聚类算法有两种方式:自下而上的聚合和自上而下的分裂。下面是自下而上的聚合层次聚类算法的Python实现代码: ```python from scipy.cluster.hierarchy import dendrogram, linkage import matplotlib.pyplot as plt # 创建数据集 X = [[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]] # 计算距离矩阵 Z = linkage(X, 'ward') # 绘制树状图 plt.figure(figsize=(10, 5)) dendrogram(Z) plt.show() ``` 3. DBSCAN算法 DBSCAN算法是一种基于密度的聚类算法,其核心思想是将密度相连的数据点划分为同一个簇。DBSCAN算法的步骤如下: 1. 选择一个未访问的数据点。 2. 如果该点周围的密度达到预设的阈值,则将其作为一个新的簇的中心点,并将其密度可达的所有点加入该簇。 3. 重复步骤2,直到所有数据点都被访问。 下面是DBSCAN算法的Python实现代码: ```python from sklearn.cluster import DBSCAN # 创建数据集 X = [[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]] # 创建DBSCAN模型 dbscan = DBSCAN(eps=1, min_samples=2) # 训练模型 dbscan.fit(X) # 预测结果 y_pred = dbscan.labels_ # 输出聚类结果 print(y_pred) ``` 以上就是几种常用的聚类算法及对应实例代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值