系列文章目录
1.动态规划解题套路框架
前言
内容参考自
今天开始按照作者指导的思路刷一刷数据结构与算法题,今日内容为 “动态规划解题套路框架”。
一、什么是动态规划?
动态规划问题的一般形式就是求最值。
既然是要求最值,求解动态规划的核心问题便是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值。
而动态规划的穷举不是一般的暴力穷举,因为这类问题存在**「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程。而且动态规划问题一定会具备「最优子结构」**,可以通过子问题的最值得到原问题的最值。然而,只有列出正确的「状态转移方程」,才能正确地穷举。
二、如何使用动态规划解决问题?
明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义
(即确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的就是优化递归树,消除重叠子问题)
解题套路框架:
# 初始化 base case
dp[0][0][...] = base
# 进行状态转移
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 求最值(选择1,选择2...)
三、例题
1.斐波那契数列
(体现重叠子问题)
给定 n ,返回斐波那契数列的第 n 项 F(n)
①暴力递归:
public int fib(int n) {
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
}
int ans = fib(n - 1) + fib(n - 2);
return ans;
}
时间复杂度: 子问题个数 x 解决一个子问题需要的时间
首先计算子问题个数,即递归树中节点的总数。显然二叉树节点总数为指数级别,所以子问题个数为 O(2^n)。
然后计算解决一个子问题的时间,在本算法中,没有循环,只有 f(n - 1) + f(n - 2) 一个加法操作,时间为 O(1)。
所以,这个算法的时间复杂度为二者相乘,即 O(2^n),指数级别,爆炸。
(因为存在大量重复计算,例如计算 F(20) 时计算了 F(19) 和 F(18),计算F(19) 时计算了 F(18) 和 F(17),使得F(18) 被计算了两次)
这就是动态规划问题的第一个性质:重叠子问题
②带备忘录的递归解法:
增加一个变量「备忘录」,每次算出某个子问题的答案后先记到「备忘录」里,再返回;每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不必再耗时去计算。
int fib(int n) {
// 备忘录全初始化为 0
int[] memo = new int[n + 1];
// 进行带备忘录的递归