2022.3.2 动态规划 —— 动态规划解题套路框架

本文介绍了动态规划的基本概念,强调了重叠子问题和最优子结构的重要性,并通过斐波那契数列和凑零钱问题展示了动态规划的解题套路,包括暴力递归、备忘录递归和DP数组迭代解法。最后讨论了最优子结构在动态规划问题中的应用。
摘要由CSDN通过智能技术生成

系列文章目录

1.动态规划解题套路框架



前言

内容参考自
今天开始按照作者指导的思路刷一刷数据结构与算法题,今日内容为 “动态规划解题套路框架”。


一、什么是动态规划?

动态规划问题的一般形式就是求最值。

既然是要求最值,求解动态规划的核心问题便是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值。
而动态规划的穷举不是一般的暴力穷举,因为这类问题存在**「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程。而且动态规划问题一定会具备「最优子结构」**,可以通过子问题的最值得到原问题的最值。然而,只有列出正确的「状态转移方程」,才能正确地穷举。

二、如何使用动态规划解决问题?

明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义
(即确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的就是优化递归树,消除重叠子问题)

解题套路框架:

# 初始化 base case
dp[0][0][...] = base
# 进行状态转移
for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 求最值(选择1,选择2...)

三、例题

1.斐波那契数列

(体现重叠子问题)

给定 n ,返回斐波那契数列的第 n 项 F(n)

①暴力递归:

public int fib(int n) {
   
        if (n == 0) {
   
            return 0;
        }
        if (n == 1) {
   
            return 1;
        }
        int ans = fib(n - 1) + fib(n - 2);
        return ans;
    }

时间复杂度: 子问题个数 x 解决一个子问题需要的时间

首先计算子问题个数,即递归树中节点的总数。显然二叉树节点总数为指数级别,所以子问题个数为 O(2^n)。

然后计算解决一个子问题的时间,在本算法中,没有循环,只有 f(n - 1) + f(n - 2) 一个加法操作,时间为 O(1)。

所以,这个算法的时间复杂度为二者相乘,即 O(2^n),指数级别,爆炸。

(因为存在大量重复计算,例如计算 F(20) 时计算了 F(19) 和 F(18),计算F(19) 时计算了 F(18) 和 F(17),使得F(18) 被计算了两次)

这就是动态规划问题的第一个性质:重叠子问题

②带备忘录的递归解法:
增加一个变量「备忘录」,每次算出某个子问题的答案后先记到「备忘录」里,再返回;每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不必再耗时去计算。

int fib(int n) {
   
    // 备忘录全初始化为 0
    int[] memo = new int[n + 1];
    // 进行带备忘录的递归
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值