阿里面试中有一道题是这样的:
请用JavaScript语言实现 sort 排序函数,要求:sort([5, 100, 6, 3, -12]) // 返回 [-12, 3, 5, 6, 100],如果你有多种解法,请阐述各种解法的思路及优缺点。(仅需用代码实现一种解法,其它解法用文字阐述思路即可)
那我们就来看一下各种解法的思路以及优缺点~
简单排序
1冒泡法:
原理:对存放原始数据的数组,按从前往后的方向进行多次扫描,每次扫描称为一趟。当发现相邻两个数据的次序与要求的不同时,即将两个数据进行互换,第一次扫描结束后,进行第二次扫描,直到所有数据符合要求。
优点:
平均时间复杂度O(n*n),是比较容易实现的算法,相对稳定。
缺点:
慢,每次只能移动相邻两个数据
1 var sortArray=new Array(); 2 var temp; 3 sortArray=id_list.split(":"); 4 for(var i=0;i<sortArray.length;i++) 5 { 6 for(var j=0;j<i;j++) 7 { 8 9 if(parseInt(sortArray[j])>parseInt(sortArray[i])) 10 { 11 temp=sortArray[j]; 12 sortArray[j]=sortArray[i]; 13 sortArray[i]=temp; 14 } 15 } 16 }
2插入排序:
原理:首先新建一个空列表用于保存已经排序的有序数列A,从原序列B中取出一个数,逐个与有序列表中的数比较,如果b[0]大于a[0]则跳过,继续比较b[0]与a[1],如果前者仍大于后者,则继续跳过,直到b[0]小于a[x],则将b[0]插入到a[x]的位置,a[x]及其后面的往后移动一位。使其仍旧保持有序状态。然后再取出一个数按相同方法插入,直至原数列为空。它借助了“逐步扩大成果”的思想,使有序列表的长度逐渐增长,直至等于元列表的长度即排序完成。
优点:
容易实现,稳定,快,适合少量数据比较。时间复杂度为O(n*n)。
缺点:
效率不高,比较次数不一定,比较次数越少,插入点后的数据移动越多,如果数据量庞大的话,可以使用链表来解决这个问题~
1 function insertSort(){ 2 var A=[5,2,4,6,1,3]; 3 4 document.write("原数组:") 5 for (var n = 0; n < A.length; n++) { 6 document.write(A[n] + " "); 7 } 8 document.write("原数组长度:"+A.length+"<br/>"); 9 var key; 10 var i; 11 for(var j=1;j<A.length;j++){ 12 key=A[j]; 13 i=j-1; 14 while(i>-1&&A[i]>key){ 15 A[i+1]=A[i]; 16 i=i-1; 17 } 18 A[i+1]=key; 19 20 //输出结果 21 document.write("第" + j + "遍排序的结果是:") 22 for (var n = 0; n < A.length; n++) { 23 document.write(A[n] + " "); 24 } 25 document.write("<br />") 26 } 27 }
3选择排序
原理:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好的数列的最后,直到全部待排序的数据元素排完。
优点:进行(n-1)趟排序即可排序完成,时间复杂度为n的平方O(n*n)
缺点:比较次数比较多,每一趟从数据中选出的目标数据都是和剩下所有数据比较的结果。
*注意和冒泡排序的区别 选择排序是从一个序列到另一个序列,冒泡排序是在本身序列的排序,选择排序性能稍稍好于冒泡排序。
1 function selectSort(array) { 2 var min, temp; ; 3 for (var i = 0; i < array.length; i++) { 4 min = i; 5 for (var j = i + 1; j < array.length; j++) { 6 if (array[min] > array[j]) 7 min = j; 8 } 9 if (min != i) { 10 temp = array[i]; 11 array[i] = array[min]; 12 array[min] = temp; 13 } 14 /* 输出结果 */ 15 document.write("第 + i + "遍排序的结果是:") 16 for (var n = 0; n < array.length; n++) { 17 document.write(array[n] + ","); 18 } 19 20 document.write("<br />") 21 /* 输出结果结束 */ 22 23 } 24 }
高效排序
快速排序
原理:快速排序是目前已知速度最快的排序方法,,排序方法所运用的思想和我们众所周知的二分法一脉相承,专业一点的话称为“分治策略”。保证列表的前半部分都小于后半部分,然后分别对两部分进行排序,这样比较前半部分时就不需要和后半部分比较了,这种方法大大减少了数据间的不必要排序,因而高效~具体步骤:假设要对一组数据进行升序排列,先任取数据a[x]作为基准,,比较a[x]与其他数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据都小于a[x],a[k+1]~a[n]中的每一个数据都大于a[k],然后按同样的方法对两组数据进行快速排序。
优点:速度极快,数据移动较少 平均时间复杂度为(n*log n)
缺点:不稳定
1 var count = 0; 2 function quickSort(array, low, high) { 3 var temp; 4 5 if (low < high) { 6 7 var keypoint = QuickSortHelp(array, low, high); 8 count++; 9 document.write("<br />第台? + count + "遍括?排?序ò的?结á果?是?:") 10 for (var l = 0; l < array.length; l++) { 11 document.write(array[l] + ","); 12 } 13 quickSort(array, low, keypoint - 1); 14 quickSort(array, keypoint + 1, high); 15 16 17 } 18 } 19 function QuickSortHelp(array, low, high) { 20 while (low < high) { 21 22 while (low < high && array[low] <= array[high]) { 23 high--; 24 } 25 temp = array[low]; 26 array[low] = array[high]; 27 array[high] = temp; 28 while (low < high && array[low] <= array[high]) { 29 low++ 30 } 31 temp = array[low]; 32 array[low] = array[high]; 33 array[high] = temp; 34 35 } 36 return low; 37 } 38
归并排序:
原理:归并排序是多次将两个或两个以上的有序表合并成一个新的有序表。特点是相等的元素的顺序不会改变,这对要排序数据包含多个信息按其中的某一个信息排序,要求其他信息尽量按输入的顺序排列时很重要,这也是比快速排序优势的地方。归并排序对数据的有序性不敏感,其时间复杂度在任何情况下都是O(nlog 2n),所以如果数据节点数据量大的话不是很合适。但是如果改造成索引操作的话效果还是很棒的~
优缺点在原理中说明~
1//source源数组 2//dest目标数组 3//s起始下标 4//t目标下标 5 function mSort(source, dest, s, t) { 6 var m; //取中间值 7 var dest2 = new Array(); 8 if (s == t) { 9 dest[s] = source[s]; 10 11 } 12 else { 13 m = Math.floor((s + t) / 2); 14 mSort(source, dest2, s, m); 15 mSort(source, dest2, m+1 , t); 16 merge(dest2, dest, s, m, t); 17 /* 输出结果 */ 18 document.write("<br />第 + ++count + "遍排序的结果是:") 19 for (var n = 0; n < dest.length; n++) { 20 document.write(array[n] + ","); 21 } 22
23 } 24 25 } 26 27
28//source原数组 29//dest排序后的数组 30//s第一个下标 31//m第二个数组下标
3233 function merge(source, dest, s, m, n) { 34 for (var j = m+1, k = s; j <= n && s <= m; k++) { 35 if (source[s] < source[j]) { 36 dest[k] = source[s++]; 37 } 38 else { 39 dest[k] = source[j++]; 40 } 41 } 42 43 //将剩余排不完的有序数组加入到dest的末端 44 if (s <= m) { 45 for (var l = 0; l <= m - s; l++) { 46 dest[k + l] = source[s+l]; 47 } 48 } 49 if (j <= n) { 50 for (var l = 0; l <= n - j; l++) { 51 dest[k + l] = source[j+l]; 52 } 53 54 } 55 }
堆排序:
原理:首先新建一个空列表,在带排序数列中找到最大的数字,将其加在空列表的末尾,并将其从原数列中删除,重复以上步骤,直至原数列为空。
*请注意与插入排序的区别,堆排序时间复杂度为O(nlog n),插入排序为O(n*n),堆排序新建的空列表作用与插入排序新建的有序列表作用相同,但仅仅是作用相同。
优点:效率高,如果只是要找到最大数的话时间复杂度仅仅为O(1)
缺点:实现相对复杂
1 function heapSort(array) { 2 var temp; 3 var i; 4 for (i = Math.floor(array.length / 2); i >= 0; i--) { 5 heapAdjust(array, i, array.length - 1); //将数组array构建成一个大顶堆 6 } 7 for (i = array.length - 1; i >= 0; i--) { 8 /*把根节点交换出去*/ 9 temp = array[i]; 10 array[i] = array[0]; 11 array[0] = temp; 12 13 /*余下的数组继续构建成大顶堆*/ 14 heapAdjust(array, 0, i - 1); 15 /* 输出结果 */ 16 document.write("<br />第 + (array.length - i).toString() + "遍排序的结果是:") 17 for (var n = 0; n < array.length; n++) { 18 document.write(array[n] + ","); 19 } 20 /* 输出结果结束 */ 21 } 22 } 23 //要调整的子树 24 //start为数组开始下标 25 //max是数组结束下标 26 function heapAdjust(array, start, max) { 27 var temp, j; 28 temp = array[start];//temp是根节点的值 29 for (j = 2 * start; j < max; j *= 2) { 30 if (j < max && array[j] < array[j + 1]) { //取得较大孩子的下标 31 ++j; 32 33 } 34 if (temp >= array[j]) 35 break; 36 array[start] = array[j]; 37 start = j; 38 } 39 array[start] = temp; 40 41 }
*该代码部分借鉴CareySon