ThreadLocal与FastThreadLocal的全面分析改进

ThreadLocal和相关的内容
一、 略过但是需要掌握的内容
1、 ThreadLocal的作用与使用
2、 ThreadLocalMap的结构与和Thread的关系
3、 ThreadLocalMap中的Entry为什么Key是WeakReference
4、 ThreadLocal是否会内存泄露
上面这些内容可以自行百度,先针对第四个问题做一些展开
二、 ThreadLocal的内存泄露条件以及不完善内存泄露防范
ThreadLocal的内存泄露的三个条件:
1、 使用线程池,线程结束Entry[]的强引用会被全部GC,所以不会内存泄露
2、 Key被回收,Value作为强引用一直存在
3、 重点:内存防范没有处理到Key为NULL的情况
2.1 ThreadLocalMap的冲突机制
总所周知HashMap无论使用什么散列算法,都是存在Hash冲突的,常见的Hash冲突的解决方法是一个数据+多个相同HashCode的链表的方式,当HashCode冲突后,往链表添加数据,查找的时候遍历链表。具体可以百度或查看Java中的HashMap的实现。
那么ThreadLocalMap是如何解决冲突的呢? SET方法,如图一所示
在这里插入图片描述
图一 ThreadLocalMap的Set方法

从倒数第四行代码来看,他是添加到从散列值到第一个为NULL的数组中。
而在查找中,我们也能找到对应的逻辑,当key不一致时候,从散列函数获取位置往后查找,如图二所示
在这个函数中,我们还能看到以下两个点:
1、 清除Key为NULL值,为什么笔者说不完善呢,下个章节分析
2、 扩容,大致的扩容方案是从16开始,大于等于2/3原长度时候进行扩容,扩容长度原长度两倍。
同样这里也有一个思索,为什么不用相对标准的HashMap结构呢,这种结构会引起连锁的冲突,目前笔者没答案,欢迎讨论。
在这里插入图片描述
图二 ThreadLocalMap的Get方法

2.2 ThreadLocalMap的不完备防止内存泄露机制
在上面的Get和Set代码中,我们看到了有处理Key为null的情况,网上有一种说法是Get和Set的时候会清理Key值为null的元素。实际并非这样的。
看get的代码,当通过Hash进行查找到数组元素的时候,同时Key的值等于查找的Key的值的时候,则不会进行其他操作,也就是说在没有冲突的情况下,是不会进行清理的。那么如果冲突了,是否是对所有key为null值进行清理呢?答案也不是的,如果找到key值相同时则不会进行清理,同样清理的初始值也是hash之后的i开始。所以get的时候是个不完备的清理。
再看set的代码,同样是从Hash之后的i进行查找,如果找到相同的key时则进行设置,如果没找到则清理后续所有的key为null的value,同样也是非完备的清理。
三、 可能存在的改进点
由于冲突的存在和不完备的清理工作,因此无论插入、删除、查找都不是O(1)的时间复杂度。同样由于不完备的清理工作,在实际使用过程中尽可能地通过remove进行完备清理来避免内存的泄露。
那么是否有改进的空间吗?答案是有的。
3.1 FastThreadLocal和InternalThreadLocal
在Netty框架中,对ThreadLocal进行了改造,不再采用HashMap的方式进行保存,而采用顺序数组的方式;在Dubbo中,参考了FastThreadLocal,下面我们对InternalThreadLocal进行分析。
先看InternalThreadLocalMap的结构,如图三:
在这里插入图片描述
图三 InternalThreadLocalMap的结构
其中slowThreadLocalMap为了兼容普通的线程,而结构不再是Entry[],而是Object[],那么是如何进行查找的呢,我们同样看Get和Set方法,如图四所示:
在这里插入图片描述
图四 InternalThreadLocal的Get/Set
这里有个至关重要的变量index,那么这个index是如何维护的呢?我们再看源码,如图五所示

在这里插入图片描述
图五 Index的维护

Index不再是像ThreadLocal一样去加一个魔数,而是加1。同时每个InternalThreadLocal自己保存着自己的Index。这样做至少有以下两个好处:
1、 省去了Hash取余操作(这个取余在JDK中已经为了提高效率采用位操作替代%,当然付出的代价就是必须长度是16的倍数)
2、 避免了冲突和清理工作,使时间复杂度为O(1)
3.2 一个疑问点与改进方式
然而,笔者有一个地方觉得比较奇怪,就是图三中的NEXT_INDEX为什么是static类型,这样造成的直接后果就是假设有1000个InternalThreadLocal变量,那么几乎所有线程都可能要扩容到1024,即便这个线程只有一个变量,如果线程是销毁的,那很快就会循环出现一次异常?为此还付出了removeall的代价,因为扩容可能造成大量元素是空元素,所以遍历效率太低。
笔者尝试把NEXT_INDEX进行修改,只有当前线程的变量超过32的时候才进行扩容,git地址为:https://taou.cn/jQfVd
至此,我们完成了ThreadLocal的分析和更高效率的扩展。那么在线程池中,又如何使用呢?
四、 线程池的使用InternalThread
那么在线程池又如何使用到InternalThread呢,我们知道线程池使用ThreadPoolExecutor,而ThreadPoolExecutor可以使用方法setThreadFactory(ThreadFactory threadFactory)进行设置线程工厂类,我们看dubbo的线程工厂的定义,图六
在这里插入图片描述
图六 Dubbo中的线程工厂

其中,Named并非必须。
那么在SpringBoot中又如何使用线程池呢?SpringBoot线程池类ThreadPoolTaskExecutor,在这个类中同样提供了setThreadFactory,因此我们同样在创建bean的使用设置自定义的线程工厂即可。

FastThreadLocal 是 Netty 中的一个优化版 ThreadLocal 实现。与 JDK 自带的 ThreadLocal 相比,FastThreadLocal 在性能上有所提升。 FastThreadLocal 的性能优势主要体现在以下几个方面: 1. 线程安全性:FastThreadLocal 使用了一种高效的方式来保证线程安全,避免了使用锁的开销,使得在高并发场景下性能更好。 2. 内存占用:FastThreadLocal 的内部数据结构更加紧凑,占用的内存更少,减少了对堆内存的占用,提高了内存的利用效率。 3. 访问速度:FastThreadLocal 在访问时,使用了直接索引的方式,避免了哈希表查找的开销,使得访问速度更快。 在 Netty 源码中,FastThreadLocal 主要被用于优化线程的局部变量存储,提高线程之间的数据隔离性和访问效率。通过使用 FastThreadLocal,Netty 在高性能的网络通信中能够更好地管理线程的局部变量,提供更高的性能和并发能力。 引用中提到的代码片段展示了 Netty 中的 InternalThreadLocalMap 的获取方式。如果当前线程是 FastThreadLocalThread 类型的线程,那么就直接调用 fastGet 方法来获取 InternalThreadLocalMap 实例;否则,调用 slowGet 方法来获取。 fastGet 方法中,会先尝试获取线程的 threadLocalMap 属性,如果不存在则创建一个新的 InternalThreadLocalMap,并设置为线程的 threadLocalMap 属性。最后返回获取到的 threadLocalMap。 slowGet 方法中,通过调用 UnpaddedInternalThreadLocalMap.slowThreadLocalMap 的 get 方法来获取 InternalThreadLocalMap 实例。如果获取到的实例为 null,则创建一个新的 InternalThreadLocalMap,并将其设置到 slowThreadLocalMap 中。最后返回获取到的 InternalThreadLocalMap。 综上所述,FastThreadLocal 是 Netty 中为了优化线程局部变量存储而设计的一种高性能的 ThreadLocal 实现。它通过减少锁的开销、优化内存占用和加快访问速度来提升性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [FastThreadLocal源码分析](https://blog.csdn.net/lvlei19911108/article/details/118021402)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Netty 高性能之道 FastThreadLocal 源码分析(快且安全)](https://blog.csdn.net/weixin_33871366/article/details/94653953)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值