强迫症
题目
Asahi 是个二次元高手,他收藏了 N 个手办。
一天,Asahi 想将手办放进房间的展示柜里,但是他是个强迫症。
为了美观,他决定不会将高度相差超过 K 的手办同时放在展示柜里。
给定每个手办的高度和 Asahi 认为最完美的 K,计算展示柜中最多可以同时放多少手办。
Asahi 很想知道问题的答案,但是 Asahi 除了二次元什么都不懂。你要帮他解出问题的答案。
输入格式:
第一行输入一个正整数 t,代表共有 t 组独立的测试数据。( 1<=t<=5 )
接下来输入 t 组数据,每组数据包括两行:
每组数据的第一行包括两个整数 N 和 K。(1<=N<=1000000,1<=K<=10000)。
每组数据的第二行包括N个整数,其中第 i 个数表示第 i 个的手办的高度。(1<= 手办的高度 <=10000)
输出格式:
每个测试数据输出一行,每行输出一个整数,代表 Asahi 可以同时放进展示柜中的最大数量。
输入样例
4
5 2
1 4 3 7 5
7 3
2 4 9 9 8 1 6
5 1
1 2 3 4 5
6 3
1 1 4 5 1 4
输出样例
3
4
2
5
做法一:
贪心算法:
int maxSize(int nums[],int k,int size){//贪心算法
int left=0;
int maxLength=0;
for(int right=0;right<size;++right){
while(right<size && (nums[right]-nums[left])<=k) {
++right;
}
maxLength=max(maxLength,right-left);
++left;
}
return maxLength;
}
- 首先,对有序数组进行遍历,用两个指针来表示当前保留的子数组的起始和结束位置。这两个指针分别是
left
和right
。 - 初始时,将
left
指针指向数组的开头,然后从左向右扩展right
指针,直到满足条件(即当前子数组中的最大值与最小值的差不超过给定的数k
)为止。 - 当无法继续扩展
right
指针时,记录当前子数组的长度(即right - left + 1
),然后将left
指针向右移动一位,缩小子数组的范围,继续寻找最大的子数组长度。 - 不断重复步骤 2 和 3,直到
left
指针超过数组的末尾为止。
做法二:
双指针+二分查找
int maxSize(int nums[],int k,int size) {//双指针+二分查找
int maxLength=0;
int left=0;
for(int right=0;right<size;++right){
while (right<size && (nums[right]-nums[left])<=k){
++right;
}
maxLength=max(maxLength,right-left);
++left;
}
return maxLength;
}
相较于上一个做法而言,时间复杂度更低;
用 upper_bound
函数找到 right
的位置,使得当前子数组中的最大值与最小值的差不超过 k
。这样可以利用二分查找的效率,将时间复杂度控制在 O(log n)。
完整代码
#include <iostream>
#include <algorithm>
using namespace std;
/*int maxSize(int nums[],int k,int size){//贪心算法
int left=0;
int maxLength=0;
for(int right=0;right<size;++right){
while(right<size && (nums[right]-nums[left])<=k) {
++right;
}
maxLength=max(maxLength,right-left);
++left;
}
return maxLength;
}*/
int maxSize(int nums[],int k,int size) {//双指针+二分查找
int maxLength=0;
int left=0;
for(int right=0;right<size;++right){
while (right<size && (nums[right]-nums[left])<=k){
++right;
}
maxLength=max(maxLength,right-left);
++left;
}
return maxLength;
}
int main()
{
int t;
scanf("%d",&t);
int* high;
while(t--){
int N,K;
scanf("%d %d",&N,&K);
high=new int [N];
for(int i=0;i<N;i++) scanf("%d",&high[i]);
sort(high,high+N);
cout<<maxSize(high,K,N)<<endl;
delete []high;
}
return 0;
}