信息熵与贝叶斯网络

本文介绍了信息熵的概念,包括相对熵、互信息和信息增益,并详细阐述了贝叶斯网络的基本原理,如贝叶斯公式、朴素贝叶斯假设以及拉普拉斯平滑。此外,还探讨了贝叶斯网络的建立方法和条件独立的判定,强调了其在诊断和预测中的重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、信息熵

1.相对熵

 又称互熵,交叉熵,KL散度。设p(x)、q(x)是X中取值的两个概率分布,则p对q的相对熵是

相对熵可以度量两个随机变量的“距离”


2.互信息

两个随机变量X,Y的互信息,定义为X,Y的联合分布和独立分布乘积的相对熵。


3.信息增益(可用于决策树构建)

信息增益表示得知特征A的信息而使得类X的信息的不确定性减少的程度。

定义:特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即g(D,A)=H(D)-H(D|A),显然,这即为训练数据集D和特征A的互信息。


二、贝叶斯网络

1.贝叶斯公式


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值