MATLAB 自带遗传工具箱之遗传算法简述

MATLAB 自带优化工具箱(optimization Tool)之遗传算法简述

在命令窗口内一键启动工具箱

>> Optimtool

 

对窗口页面进行解释

一、Promblem setup and results

  1. Solver(求解器):选择选择需要的算法
  2. Problem:需要解决的问题
  1. Fitness function:需要优化的目标函数,填写格式:@f (f为编写目标函数的文件名)
  2. Number of variables:目标函数输入变量的数目
  1. Constraints (约束)
  1. Linear inequalities(线性不等式约束):表示为:A*x<=b, 填写矩阵A和向量b
  2. Linear equalities(线性不等式约束):表示为:Aeq*x=beq, 填写矩阵Aeq和向量beq
  3. Bounds:变量的取值范围,Lower取下界 Upper 取上界,均以向量表示
  4. Nonlinear constraint function(非线性约束函数)填写格式:@nonlcon(nonlcon为非线性约束函数的文件)
  1. Run olver and view result 运行求解器并观察结果

Star 开始运行遗传算法。Current iteration :显示当前运行的次数Final point:显示最优解对应变量的取值

二、Option:遗传算法参数设定

  1. 1.Population 种群参数设定

         (1)Population type 编码方式:浮点编码和二进制编码,默认Double vector

         (2)Population  size 种群大小:默认50

         (3)Creation function 创建函数:创建初始种群

         (4)intial Population初始化种群,如果不指定初始种群,则系统将运用创建函数创建初始种群

         (5)initial scores 初始得分,若此处未定义初始得分,则系统运用适应度函数计算初始得分

(6)initial range 初始范围,用于指定初始种群中各变量的上下限,初始范围用矩阵表示,行数表示变量个数,每行2个元素且表示变量上下界。

2.Fitness scaling:变换适应度函数值的函数句柄

3.slection 选择方法

4.reproduction:复制

(1)Elite count保留上一代个体的个数

(2)crossover fraction:交叉的概率

5.mutation:变异方法

6.crossover:交叉方法

7.migration:指定迁移方向,概率和频率

8.constraint parameter 约束参数(针对非线性约束函数)

9.hybrid function(暂时不知道怎么用)

10Stop criteria:指定约束条件,

(1)Generation和Timelimit指定迭代代数和时间的最大极限

(2)Fitness limit指定小于某一阈值就可以收敛,

(3)stall Generation和stallTimelimit:经过多少代或多久最优值没有出现变化时就收敛。

11.Plot function:与图形输出有关

(1)plot interval 指定多少代输出一次默认为1

(2)Best fitness和best invividual 表示将最优解和相应个体输出到图像上。

12.Display to command window:输出到命令窗口。

文章创作不易,求赏

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值