经典的博弈论案例:
五个海盗抢到了100颗宝石。为了显示公平,他们决定这样分配:
1、抽签决定每个人的号码(1、2、3、4、5) ;
2、先由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则分配者将被扔进大海喂鲨鱼;
3、如果1号死后,再由2号提出分配方案,剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则分配者将被扔入大海喂鲨鱼;
依此类推,直到最后分配完成。
这个案例有一个附加的(但很重要)条件:每个海盗都是智者,都能很理智地做出判断。判断的先后次序是:保命第一,获得宝石的数量第二。
问题:第一个海盗该提出怎样的分配方案?
很多人会认为:第一个人最危险。其实不然,他可以获得很大的收益。我们从5号依次向前考虑(逆推法)
5号:当只剩下4、5号时,否决4号,独吞宝石;
4号:考虑到5号的策略,4号不能杀3号,不管3号提出什么条件,都只能答应;
3号:由于4号不可能杀3号,因此3号尽可以提出(100,0,0)的分配方案,4号一定会同意的(否则4号必死无疑),投票比例2:1,通过!
2号:必须争取两个人的支持。3号是不可能的,那就争取4号、5号。那么,就要让4号、5号的收益比杀死2号来得大,那么分配方案可以是(98,0,1,1)。投票3:1
1号:争取2号是不可能的,那么,就争取34号,35号或45号。
如果争取45号,分配方案至少是(96,0,0,2,2);
如果争取34号,分配方案可以是(97,0,1,2,0);
如果争取35号,分配方案可以是(97,0,1,0,2)。
显然,1号可以提出分配方案是:(97,0,1,2,0)或(97,0,1,0,2),从而获得3:2的投票结果,通过!
现在,真正的问题来了:这个推理方案可信吗?
我们来看看另一个案例:
有一个囚徒正站在法官面前听候判决,值得庆幸的是,法官非常仁慈,他为了不让囚徒在确知的刑期前忍受折磨,作出如下判决:
在下周七天中的某一天,我将在日出之时判处你绞刑。我在下令时,会保证你不可能事先知道你将在哪一天被绞死。也许每个夜晚你都在思考明天早晨是不是可怕的末日,然而,当最后的时刻来临时,它完全是一个意外。
囚徒发现,他的律师在听到这个判决后,竟然露出微笑。律师对他说:“他们不能够绞死你!”囚徒感到不解,律师解释道:
首先,根据判决,你是不可能在周日被行刑的。因为一旦周日行刑,你在周六时就知道行刑日一定是周日,这与法官说的“你不可能事先知道你将在哪一天被绞死”是矛盾的(注:这里把周日作为最后一天,周一为第一天);
既然周日不能行刑,那么就只可能是前六天中的某一天。但是,行刑日不可能是周六,因为一旦周六行刑,你在周五时就知道你的行刑日一定是周六,这与法官说的“你不可能事先知道你将在哪一天被绞死”又是矛盾的;
以此类推,周二也不可能是你的行刑日,那么就只剩下周一了,如果是周一,这表示你现在就已经知道你确切的行刑日,这还是跟法官说的“你不可能事先知道你将在哪一天被绞死”相矛盾。
因此,这个判决根本就无法执行,你肯定死不了!
囚徒听后表示赞同。但当囚徒带着愉快的心情过了两天之后,周三他刚从美梦中醒来,就被押往刑场。这个执行与法官的判决并没有矛盾,因为很明显,囚徒被押往刑场前,他果真不知道自己会在星期三被绞死——这对他来说非常意外。
律师用的也是逆推法,很明显,结论是错误的。但是,律师的推理真的错了吗,错在哪里?
同样的,前面的海盗分珠宝的推理,是不是真的就无懈可击,会不会出什么意外呢?