06事务、视图和索引

目标:
使用事务保证操作数据的完整性
掌握如何创建并使用视图
掌握如何创建并使用索引
关键单词
transaction 事务,交易
atomicity 原子性
consistency 一致性
isolation 隔离性
durability 永久性
commit 承诺
rollback 回滚
view 视图
index 索引
事务定义:
事务是作为单个逻辑工作单元执行的一系列操作。就是把一系列的操作作为一个整体,操作都成功则整体成功,只要一个操作失败,整体失败。
事务特点:
四个特点:简称(ACID)
  1. 原子性(Atomicity) 事务的元素不可再分。
  2. 一致性(Consistency) 当事务完成时,数据必须处于一致状态。
  3. 隔离性(Isolation) 事务彼此隔离。
  4. 持久性(Durability) 事务处理的结果都是永久的。
执行事务的语法:
begin transaction --开始事务
commit transaction --提交事务
rollback transaction --回滚(撤销)事务
事务分类:
显示事务:用begin transaction明确指定事务的开始
隐式事务:通过设置set implicit_transcations on 语句,将隐式事务模式打开,不再需要描述每个事务的开始,只需要提交或回滚每个事务。
自动提交事务:sql server默认模式:单独的T-SQL语句就是一个事务。

事务应用示例:

use MySchool
go

set nocount on --不显示受影响的行数信息
print '查看转账事务前得余额'
select * from bank
go
/*--开始事务(指定事务从此处开始,后续的T-SQL语句都是一个整体)--*/
begin tran
/*--定义变量,用于累计事务执行过程中的错误--*/
declare @errorSum int
SET @errorSum=0
/*--转账:张三的账户少1000,李四的账户增加1000-*/
update bank set currentMoney -= 1000
where customerName='张三'
set @errorSum += @@ERROR  --累计是否有错误
update bank set currentMoney += 1000
where customerName='李四'
set @errorSum += @@ERROR  --累计是否有错误

print '查看转账事务过程中的余额'

select * from bank

/*--根据是否有错误,确定事务是提交还是撤销--*/
if @errorSum<>0
    begin
      print '交易失败,回滚事务'
      rollback tran
    end
else
    begin
       print '交易成功,提交事务,写入硬盘,永久地保存'
       commit tran
    end
go

print '查看转账事务后的余额'

select * from bank

go


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值