第四题
题目:
今有7对数字:两个1,两个2,两个3,...两个7,把它们排成一行。
要求,两个1间有1个其它数字,两个2间有2个其它数字,以此类推,两个7之间有7个其它数字。如下就是一个符合要求的排列:
17126425374635
当然,如果把它倒过来,也是符合要求的。
请你找出另一种符合要求的排列法,并且这个排列法是以74开头的。
注意:只填写这个14位的整数,不能填写任何多余的内容,比如说明注释等。
答案:
74151643752362
public class Main {
static int[] arr;
public static void main(String[] args){
arr=new int[14];
arr[0]=7;
arr[1]=4;
p(2);
}
public static void p(int i){
if(i==14){//递归终点
test2();//在所有的样本里找符合条件的输出。
return;
}
for(int j=1;j<=7;j++){
if(test(i,j)){//判断前面这个数有没有出现两次
arr[i]=j;
p(i+1);//递归
}
}
}
public static boolean test(int i,int j){
int count=0;
for(int i1=0;i1<i;i1++){
if(arr[i1]==j){
count++;
}
}
if(count>=2){
return false;
}
else{
return true;
}
}
public static void test2(){
boolean bo;
for(int i=0;i<14;i++){//只要i的前面i个数或者后面i个数是i,这个数就符合条件
bo=true;
if(i+arr[i]+1>=0&&i+arr[i]+1<14)
if(arr[i]==arr[i+arr[i]+1]){
bo=false;
}
if(i-arr[i]-1>=0&&i-arr[i]-1<14)
if(arr[i]==arr[i-arr[i]-1]){
bo=false;
}
if(bo)
return;
}
for(int i=0;i<14;i++){
System.out.print(arr[i]);
}
System.out.println();
}
}
分析:运用递归找出第一批样本数据:每个数字只出现过两次,然后对样本进行检测,是否符合题目要求。
总结:在算法里,可以把问题划分成几个小问题,然后代码中每个的方法解决相对应的小问题,这样有助于调试代码出现的错误。
第五题
题目:
勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。
已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。
求满足这个条件的不同直角三角形的个数。