题目描述
国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;
每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。
任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 DD,这是受收发器的功率限制。收发器的功率越高,通话距离 DD 会更远,但同时价格也会更贵。
收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 DD。你的任务是确定收发器必须的最小通话距离 DD,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。
输入格式
从 wireless.in 中输入数据第 1 行,2 个整数 SS 和 PP,SS 表示可安装的卫星电话的哨所数,PP 表示边防哨所的数量。接下里 PP 行,每行两个整数 x,yx,y 描述一个哨所的平面坐标 (x, y)(x,y),以 km 为单位。
输出格式
输出 wireless.out 中
第 1 行,1 个实数 DD,表示无线电收发器的最小传输距离,精确到小数点后两位。
输入输出样例
输入 #1复制
2 4 0 100 0 300 0 600 150 750
输出 #1复制
212.13
说明/提示
对于 20\%20% 的数据:P = 2,S = 1P=2,S=1
对于另外 20\%20% 的数据:P = 4,S = 2P=4,S=2
对于 100\%100% 的数据保证:1 ≤ S ≤ 1001≤S≤100,S < P ≤ 500S<P≤500,0 ≤ x,y ≤ 100000≤x,y≤10000。
#include<bits/stdc++.h>
using namespace std;
int data[100050],x[100050],y[100050];
struct node
{
double u,v,w;
}edge[1000050];
bool cmp(node a,node b)
{
return a.w<b.w; //从小到大的排序
}
int find(int a)//并查集的查找模板;
{
if(data[a]==a)return a;
return data[a]=find(data[a]);
}
int main()
{
double res,q,p;
cin >> q >> p;
int n=1,m=0;
for(int i=1;i<=p;i++)
{
cin >> x[i] >> y[i];
for(int j=1;j<i;j++)
{
edge[n].u = i;
edge[n].v = j;
edge[n].w = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
n++;
}
}
for(int i=1;i<=p;i++)//循环并初始化;
{
data[i] = i;
}
sort(edge+1, edge+n+1, cmp);//排序
for(int i=1;i<=n;i++)
{
if(find(edge[i].u)!=find(edge[i].v))
{
data[find(edge[i].u)] = find(edge[i].v);
res = edge[i].w;
m++;
if(m+q==p)
{
printf("%.2lf", res);
break;
}
}
}
return 0;
}
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz
。
输入格式
第一行包含两个整数 N,MN,M,表示该图共有 NN 个结点和 MM 条无向边。
接下来 MM 行每行包含三个整数 X_i,Y_i,Z_iXi,Yi,Zi,表示有一条长度为 Z_iZi 的无向边连接结点 X_i,Y_iXi,Yi。
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz
。
输入输出样例
输入 #1复制
4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3
输出 #1复制
7
说明/提示
数据规模:
对于 20\%20% 的数据,N\le 5N≤5,M\le 20M≤20。
对于 40\%40% 的数据,N\le 50N≤50,M\le 2500M≤2500。
对于 70\%70% 的数据,N\le 500N≤500,M\le 10^4M≤104。
对于 100\%100% 的数据:1\le N\le 50001≤N≤5000,1\le M\le 2\times 10^51≤M≤2×105,1\le Z_i \le 10^41≤Zi≤104。
样例解释:
所以最小生成树的总边权为 2+2+3=72+2+3=7。
这个完成了84,还有一部分存在问题,正在解决中,一些数据还有点问题。
#include<bits/stdc++.h>
using namespace std;
int data[5050];
struct node
{
int u,v,w;
}edge[200050];
bool cmp(node a,node b)
{
return a.w<b.w; //从小到大的排序
}
int find(int a)
{
if(data[a]==a)return a;
return data[a]=find(data[a]);
}
int kruskal(int n,int m)
{
int x=0,y=0;
sort(edge+1,edge+1+m,cmp);//sort排序,结构体数组的类型不确定,通过CMP来定义
for(int i=1;i<=m;i++)
{
int a,b;
a=find(edge[i].u);
b=find(edge[i].v);
if(a!=b)//判断是否出现闭环
{
x+=edge[i].w;
data[b]=a;//合并两个点到一个集合
y++;//统计合并用了多少条边
if(y==n-1)
{
break;
}
}
}
return x;
}
int main()
{
int n,m,x,y;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
data[i]=i;//结构体数组点的循环;
}
for(int i=1;i<=m;i++)
{
cin >> edge[i].u >> edge[i].v >> edge[i].w;//边的循环;
}
x=kruskal(n,m);
cout<<x;
return 0;
}
这两个题理解起来都差不多,而且都可以用并查集来解决。
有一个模板可以套用,方便解决此类问题。
#include<bits/stdc++.h>
using namespace std;
int data[5050];
struct node
{
int u,v,w;
}edge[200050];
bool cmp(node a,node b)
{
return a.w<b.w; //从小到大的排序
}
int find(int a)
{
if(data[a]==a)return a;
return data[a]=find(data[a]);
}
int kruskal(int n,int m)
{
int x=0,y=0;
sort(edge+1,edge+1+m,cmp);//sort排序,结构体数组的类型不确定,通过CMP来定义
for(int i=1;i<=m;i++)
{
int a,b;
a=find(edge[i].u);
b=find(edge[i].v);
if(a!=b)//判断是否出现闭环
{
x+=edge[i].w;
data[b]=a;//合并两个点到一个集合
y++;//统计合并用了多少条边
if(y==k)
{
break;
}
}
}
return x;
}