2022年2月16号

题目描述

国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;

每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。

任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 DD,这是受收发器的功率限制。收发器的功率越高,通话距离 DD 会更远,但同时价格也会更贵。

收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 DD。你的任务是确定收发器必须的最小通话距离 DD,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。

输入格式

从 wireless.in 中输入数据第 1 行,2 个整数 SS 和 PP,SS 表示可安装的卫星电话的哨所数,PP 表示边防哨所的数量。接下里 PP 行,每行两个整数 x,yx,y 描述一个哨所的平面坐标 (x, y)(x,y),以 km 为单位。

输出格式

输出 wireless.out 中

第 1 行,1 个实数 DD,表示无线电收发器的最小传输距离,精确到小数点后两位。

输入输出样例

输入 #1复制

2 4
0 100
0 300
0 600
150 750

输出 #1复制

212.13

说明/提示

对于 20\%20% 的数据:P = 2,S = 1P=2,S=1

对于另外 20\%20% 的数据:P = 4,S = 2P=4,S=2

对于 100\%100% 的数据保证:1 ≤ S ≤ 1001≤S≤100,S < P ≤ 500S<P≤500,0 ≤ x,y ≤ 100000≤x,y≤10000。

#include<bits/stdc++.h>
using namespace std;

int data[100050],x[100050],y[100050];
struct node
{
	double u,v,w;	
}edge[1000050];

bool cmp(node a,node b)
{
	return a.w<b.w; //从小到大的排序
}

int find(int a)//并查集的查找模板;
{
	if(data[a]==a)return a;
	return data[a]=find(data[a]);
}

int main()
{     
	double res,q,p;
	cin >> q >> p;
	int n=1,m=0;
	for(int i=1;i<=p;i++)
	{
		cin >> x[i] >> y[i];
		for(int j=1;j<i;j++)
		{
			edge[n].u = i;
			edge[n].v = j;
			edge[n].w = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
			n++;
		}
	}
	for(int i=1;i<=p;i++)//循环并初始化;
	{
		data[i] = i;
	}
	sort(edge+1, edge+n+1, cmp);//排序
	for(int i=1;i<=n;i++)
	{
		if(find(edge[i].u)!=find(edge[i].v))
		{
			data[find(edge[i].u)] = find(edge[i].v);
			res = edge[i].w;
			m++;
			if(m+q==p)
			{
				printf("%.2lf", res);
				break;
			}			
		}
	}
	return 0;
}

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz

输入格式

第一行包含两个整数 N,MN,M,表示该图共有 NN 个结点和 MM 条无向边。

接下来 MM 行每行包含三个整数 X_i,Y_i,Z_iXi​,Yi​,Zi​,表示有一条长度为 Z_iZi​ 的无向边连接结点 X_i,Y_iXi​,Yi​。

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz

输入输出样例

输入 #1复制

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出 #1复制

7

说明/提示

数据规模:

对于 20\%20% 的数据,N\le 5N≤5,M\le 20M≤20。

对于 40\%40% 的数据,N\le 50N≤50,M\le 2500M≤2500。

对于 70\%70% 的数据,N\le 500N≤500,M\le 10^4M≤104。

对于 100\%100% 的数据:1\le N\le 50001≤N≤5000,1\le M\le 2\times 10^51≤M≤2×105,1\le Z_i \le 10^41≤Zi​≤104。

样例解释:

所以最小生成树的总边权为 2+2+3=72+2+3=7。

这个完成了84,还有一部分存在问题,正在解决中,一些数据还有点问题。

#include<bits/stdc++.h>
using namespace std;

int data[5050];
struct node
{
	int u,v,w;	
}edge[200050];

bool cmp(node a,node b)
{
	return a.w<b.w; //从小到大的排序
}

int find(int a)
{
	if(data[a]==a)return a;
	return data[a]=find(data[a]);
}

int kruskal(int n,int m)
{
	int  x=0,y=0;
	sort(edge+1,edge+1+m,cmp);//sort排序,结构体数组的类型不确定,通过CMP来定义
	for(int i=1;i<=m;i++)
	{
		int a,b;
		a=find(edge[i].u);
		b=find(edge[i].v);
		if(a!=b)//判断是否出现闭环
		{
			x+=edge[i].w;
			data[b]=a;//合并两个点到一个集合
			y++;//统计合并用了多少条边
			if(y==n-1)
			{
				break;
			}	
		}
	}	
	return x;
}

int main()
{
	int n,m,x,y;
	scanf("%d %d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		data[i]=i;//结构体数组点的循环;	
	}
	for(int i=1;i<=m;i++)
	{
		cin >> edge[i].u >> edge[i].v >> edge[i].w;//边的循环;
	}
	x=kruskal(n,m);
	cout<<x;
	return 0;		
}

 这两个题理解起来都差不多,而且都可以用并查集来解决。

有一个模板可以套用,方便解决此类问题。

#include<bits/stdc++.h>
using namespace std;

int data[5050];
struct node
{
	int u,v,w;	
}edge[200050];

bool cmp(node a,node b)
{
	return a.w<b.w; //从小到大的排序
}

int find(int a)
{
	if(data[a]==a)return a;
	return data[a]=find(data[a]);
}

int kruskal(int n,int m)
{
	int  x=0,y=0;
	sort(edge+1,edge+1+m,cmp);//sort排序,结构体数组的类型不确定,通过CMP来定义
	for(int i=1;i<=m;i++)
	{
		int a,b;
		a=find(edge[i].u);
		b=find(edge[i].v);
		if(a!=b)//判断是否出现闭环
		{
			x+=edge[i].w;
			data[b]=a;//合并两个点到一个集合
			y++;//统计合并用了多少条边
			if(y==k)
			{
				break;
			}	
		}
	}	
	return x;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不ci香菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值