例: a=24,b=18 求最大公约数和最小公倍数。
求最大公约数用辗转相除法
最大公约数与最小公倍数之间的关系:
两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即 AXB=最大公约数X最小公倍数 a*b=gcd(a,b)*lcm(a,b);
所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
int gcd(int a,int b)
{
a=max(a,b);
b=min(a,b);
int c=a%b;
while(c!=0)
{
a=b;
b=c;
c=a%b;
}
return b;
}
int lcm(int a,int b)
{
int ans=0;
ans=a*b/gcd(a,b);
return ans;
}
描述
给定两个正整数,求它们的最大公约数。
输入
输入一行,包含两个正整数(<1,000,000,000)。
输出
输出一个正整数,即这两个正整数的最大公约数。
样例输入
6 9
样例输出
3
提示
求最大公约数可以使用辗转相除法:
假设a > b > 0,那么a和b的最大公约数等于b和a%b的最大公约数,然后把b和a%b作为新一轮的输入。
由于这个过程会一直递减,直到a%b等于0的时候,b的值就是所要求的最大公约数。
比如:
9和6的最大公约数等于6和9%6=3的最大公约数。
由于6%3==0,所以最大公约数为3。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
ios::sync_with_stdio(false);
int m,n;
cin>>m>>n;
if(m<n)
swap(m,n);
int t=m%n;
while(t)
{
m=n;
n=t;
t=m%n;
}
cout<<n<<endl;
// int temp;
// while(n)
// {
// temp=n;
// n=m%n;
// m=temp;
// }
// cout<<m<<endl;
return 0;
}