【求最大公约数和最小公倍数】

例: a=24,b=18 求最大公约数和最小公倍数。

 

求最大公约数用辗转相除法

 

最大公约数与最小公倍数之间的关系:

两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即  AXB=最大公约数X最小公倍数 a*b=gcd(a,b)*lcm(a,b);

 

所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。

int gcd(int a,int b)
{
    a=max(a,b);
    b=min(a,b);
    int c=a%b;
    while(c!=0)
    {
        a=b;
        b=c;
        c=a%b;
    }
    return b;
}

int lcm(int a,int b)
{
    int ans=0;
    ans=a*b/gcd(a,b);
    return ans;
}

 

 

描述

给定两个正整数,求它们的最大公约数。

输入

输入一行,包含两个正整数(<1,000,000,000)。

输出

输出一个正整数,即这两个正整数的最大公约数。

样例输入

6 9

样例输出

提示

求最大公约数可以使用辗转相除法:
假设a > b > 0,那么a和b的最大公约数等于b和a%b的最大公约数,然后把b和a%b作为新一轮的输入。
由于这个过程会一直递减,直到a%b等于0的时候,b的值就是所要求的最大公约数。
比如:
9和6的最大公约数等于6和9%6=3的最大公约数。
由于6%3==0,所以最大公约数为3。

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
    ios::sync_with_stdio(false);
    int m,n;
    cin>>m>>n;
    if(m<n)
        swap(m,n);
    int t=m%n;
    while(t)
    {
        m=n;
        n=t;
        t=m%n;
    }
    cout<<n<<endl;
//    int temp;
//    while(n)
//    {
//        temp=n;
//        n=m%n;
//        m=temp;
//    }
//    cout<<m<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值