1,安装JDK(1.8)与Hadoop(2.7.2)
1>将jdk与hadoop放到/opt/tool(自己建一个文件夹)
2>tar zxvf进行解压
3>配置JDK与Hadoop环境变量
vim /etc/profile
内容如下:
<span style="font-size:24px;">export JAVA_HOME=/opt/tool/jdk1.8.0_101
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH
export HADOOP_HOME=/opt/tool/hadoop-2.7.2
export PATH=.:$HADOOP_HOME/bin:$JAVA_HOME/bin:$JRE_HOME/sbin:$PATH</span>
source /etc/profile
测试:java -version hadoop,检查是否安装成功
4>将jdk设置入hadoop中
在vim etc/hadoop/hadoop-env.sh 设置export JAVA_HOME=/opt/tool/jdk1.8.0_101
5>启动hadoop
./hadoop/sbin/start-all.sh,按步骤操作,输入密码以及yes确定等
测试:jps,检查各个进程是否已经启动成功;
6>这个很重要:
vim /etc/sysconfig/network进入检查主机名
hostname检查主机名
如不一样,使用hostname localhost.localdomain更改
2,测试demo
1>编写Java代码,也就是MapReduce
1>>
<span style="font-size:24px;">package wordcount;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordMapper extends Mapper<Object,Text,Text,IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreElements()){
word.set(itr.nextToken());
context.write(word, one);
}
}
}</span>
2>>
<span style="font-size:24px;">package wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
private IntWritable result = new IntWritable();
public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{
int sum = 0;
for(IntWritable val:values){
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}</span>
3>>
<span style="font-size:24px;">package wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordMain {
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
for(int i=0;i<otherArgs.length;i++){
System.out.println(otherArgs[i]);
}
// if(otherArgs.length != 2){
// System.err.println("Usage:wordcount <in><out>");
// System.exit(2);
// }
Job job = new Job(conf,"word count");
job.setJarByClass(WordMain.class);
job.setMapperClass(WordMapper.class);
job.setCombinerClass(WordReducer.class);
job.setReducerClass(WordReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0:1);
}
}
</span>
2>打成jarfile
3>将jar放到hadoop节点下
4>将统计文件放入到hdfs系统下,并创建文件夹,为hdfs文件
hadoop fs -put /opt/tool/file.txt /opt/tool/input/
测试:查看是否上传成功:hadoop fs -ls /opt/tool/input/
5>执行大数据分析:
hadoop jar wordcount.jar wordcount.WordMain /opt/tool/input/file.txt /opt/tool/output
注意执行可执行文件(这个jar一定注意路径,只有在当前路径才可以不写路径)