游船费问题——动态规划

咳咳 以下均为原创,发散乱想

好吧,一张图片说明完毕,我们用路径长短表示坐船费用,求最少费用:

ps:本题属于最短路线求解。发散:可以将路径长短通过 线性映射或 非线性映射转化为某种(加权)量,来求解最优(加权)问题。ok,这就看你的脑容量有多大了!

分析:1.话说动态规划两要素:下一阶段的最优状态=现阶段最优状态+当前决策 (这是从自底向上的角度出发思考的,对应着最优递归关系式)

         2.需要个关键技巧:合适的定义一种最优状态表来记录最优状态值,本题我们用m[i][j]表示i站到j站的最少费用,m[i][j]就是我们要找的最优状态表(本题中它属于二维表)

         3.必须利用题目信息,该信息是决策用到的依据。本文用p[i][j]表示i站直接到j站的费用,i的取值范围(0,n-1),j的取值范围(1,n)。

         仔细分析最优子结构,根据问题内容科学写出最优递归关系式。

              

代码:

 1 //  
 2 //
 3 
 4 #include "stdafx.h"
 5 #include <iostream>
 6 using namespace std;
 7 
 8 class mincost_chuanfei {
 9 public:
10     int n;
11     int **p, **m,**t;
12 
13     void data_read()
14     {
15         int i, j;
16         cin >> n;
17         p = new int*[n];
18         for (i = 0; i < n; i++) p[i] = new int[n+1];//p[i][j]表示i站直接到j站的费用,i@(0,n-1),j@(1,n)
19         m = new int*[n];
20         for (i = 0; i < n; i++) m[i] = new int[n+1];//m[i][j]表示i站到j站的最少费用
21         t = new int*[n];
22         for (i = 0; i < n; i++) t[i] = new int[n+1];//t[i][j]用于跟踪i站到j站之间断开的某一站序号,用于构造最优解
23         for (i = 0; i < n; i++)
24         {
25             for (j = i + 1; j <= n; j++) cin >> p[i][j];
26         }
27     }
28 
29     void data_processing()
30     {
31         int i, j, s,tmp;
32         for (s = 1; s<=n; s++)//让步距s从1加大到n
33         {
34             for (i = 0; i<=n - s; i++)//i@(0,n-s)
35             {
36                 j = s + i;//j等于i+步距s
37                 if (s == 1) { m[i][j] = p[i][j]; t[i][j] = j; }
38                 else {
39                     tmp = p[i][j]; t[i][j] = j;
40                     for (int k = i + 1; k < j; k++)
41                     {
42                         if (m[i][k] + m[k][j] < tmp) { tmp = m[i][k] + m[k][j]; t[i][j]=k;}
43                     }
44                     m[i][j] = tmp;
45 
46                      }
47             }
48         }
49 
50     }
51 
52     void Traceback(int i, int j, int** t)
53     {
54         if (t[i][j] == j) {
55             cout << "start:"<<i<<"      end:"<<j << endl; return;
56         }
57         Traceback(i, t[i][j], t);
58         Traceback(t[i][j], j, t);
59     }
60 
61 
62 
63     void data_output()
64     {
65         cout << "the min cost:" << m[0][n] << endl;
66         Traceback(0, n, t);
67 
68     }
69 };
70 
71 
72 
73 
74 int main()
75 {
76     mincost_chuanfei dd;
77     dd.data_read();
78     dd.data_processing();
79     dd.data_output();
80      
81 
82     return 0;
83 }

                 

转载于:https://www.cnblogs.com/jieforever/p/4711641.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值