题目描述
天才程序员菜哭武和石头组队参加一个叫做国际排列计算竞赛 (International Competition of Permutation Calculation, ICPC) 的比赛,这个比赛的规则是这样的: 一个选手给出一个长度为 n的排列,另一个选手给出 m 个询问,每次询问是一个形如 (l, r) 的数对,查询队友给出的排列中第 l 个数到第 r个数的和,并将查询到的这个区间和加入总分,最后总分最高的队伍就能获胜。 石头手速很快,在比赛一开始就给出了 m 个询问;菜哭武也很强,他总是能找到最合适的排列,使得他们队的总分尽可能高。 在看比赛直播的你看到了石头给出的 m个询问,聪明的你能不能预测出他们队伍最终的得分呢? 一个排列是一个长度为 n 的数列,其中 1 ~ n中的每个数都在数列中恰好出现一次。比如 [1, 3, 2] 是一个排列,而 [2, 1, 4] 和 [1, 2, 3, 3] 不是排列。
输入描述:
第一行输入两个数 n (1≤n≤2×105) 和 m (1≤m≤2×105) 。 接下来 m 行,每行输入两个数 l 和 r
,代表这次查询排列中第 l 个到第 r 个的和。
输出描述:
输出一个整数,代表他们队伍总分的最大值。
示例1
输入
7 3
1 3
3 7
5 6
输出
46
说明
一个符合条件的排列是 [1,3, 6, 4, 7, 5, 2],于是最终的得分为 (1 + 3 + 6) + (6 + 4 + 7 + 5 + 2) + (7 + 5) = 46。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+100;
int n,m,a[maxn],d[maxn];
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int x,y;
cin>>x>>y;
d[x]++;d[y+1]--;
}
for(int i=1;i<=n;i++)
d[i]=d[i]+d[i-1];
sort(d+1,d+1+n);
long long sum=0;
for(int i=1;i<=n;i++)
{
sum+=d[i]*i;
}
cout<<sum<<endl;
return 0;
}