四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
输入:
程序输入为一个正整数N (N<5000000)
输出:
要求输出4个非负整数,按从小到大排序,中间用空格分开
样例输入
5
样例输出
0 0 1 2
思路:
这个题拿到之后,是思考了一会。
除了暴力解法之外,还有一种思路就是:
例如5:
遍历1~sqrt(5),用i遍历
如果i * i <= 5 且 (i + 1) * (i + 1) > 5
这个时候就找到那个最大的i值了
然后就可以使用递归,依次求剩下的数的最大i值。
然后将这些数据存储到数组中。
当然还需要考虑的就是,如果有好几组数据都可以得出来那个输入的n值呢,这个时候就要使用排序了,利用sort,把某个数的平方和表示的那几个数字排序,挑出字典序最小的一个即可,持续更新数组数据,就可以得出来最终的结果。
不过这个写的一直有bug
在这里我就先呈上来一个暴力法吧
//直接穷举:
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int n;
cin >> n;
int flag = 0;
double x = sqrt(n),d;
for(int a = 0 ; a <= x;a++)
{
for(int b = a; b <= x; b++)
{
for(int c = b ; c <= x ; c++)
{
d = sqrt(n - a * a - b * b - c * c);
if(d == (int)d)
{
cout << a << " " << b << " " << c << " " << d << endl;
flag = 1;
break;
}
}
if(flag)
break;
}
if(flag)
break;
}
return 0;
}
我是可爱的分界线-------------~
尚未完成的思路一
//此处代码请自动忽略
/*#include<iostream>
#include<cmath>
using namespace std;
int a[4];
int f(int n)
{
cout << "f函数被调用" << endl;
int i,t = 0,flag = 0;
for( i = 0 ; i <=sqrt( n) ; i++)
{
int left = i * i;
int right = (i + 1) * (i + 1);
cout << "left : " << left <<" " << "right = " << right << endl;
if(left <= n && right > n)//这个时候可以找到最大的数
{
a[t++] = i;
cout << "t是多少 " << t << endl;
cout << "进入数组的数值:" << i << endl;
flag = 1;
}
if(i == 4 && flag) return f(n - left);
}
return *a;
}
int main()
{
int n;
cin >> n;
f(n);
for(int i = 0 ; i < 4; i++)
cout << a[i] << endl;
return 0;
}*/