3332[ZJOI2013]K大数查询

本文介绍了解决ZJOI2013 K大数查询问题的一种高效算法,通过使用整体二分和树状数组进行区间修改查询k小值,优化了传统树套树方法,降低了复杂度,提高了代码可读性和运行效率。

3332[ZJOI2013]K大数查询

题面:洛谷

解析

离线算法好啊(废话,不然为什么离线)!这道题带区间修改查询\(k\)小值,如果树套树,要用线段树套线段树,外层维护权值,里层维护区间,复杂度\(O(n\log^{2}{n})\),但我们可以用整体二分,虽然复杂度也是\(O(n\log^{2}{n})\),但是常数小啊,代码又好写。依然是二分第\(k\)小的数值,用树状数组维护即可(常数小)。

代码


#include<cstdio>
#define LL long long
#define N 50005
#define I inline
using namespace std;
int n,m,id[N],t1[N],t2[N],ans[N];
struct Q{ int op,l,r; LL val; }q[N];
LL a1[N],a2[N];
I int In(){
    char c=getchar(); int x=0,ft=1;
    for(;c<'0'||c>'9';c=getchar()) if(c=='-') ft=-1;
    for(;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0';
    return x*ft;
}
I int LB(int x){ return x&(-x); }
I void Add1(int x,int C){ for(int i=x;i<=n;i+=LB(i)) a1[i]+=C; }
I LL Sum1(int x){ LL s=0; for(int i=x;i;i-=LB(i)) s+=a1[i]; return s; }
I void Add2(int x,int C){ for(int i=x;i<=n;i+=LB(i)) a2[i]+=(LL)C*x; }
I LL Sum2(int x){ LL s=0; for(int i=x;i;i-=LB(i)) s+=a2[i]; return s; }
I void Modify(int l,int r,int C){ Add1(l,C); Add1(r+1,-C); Add2(l,C); Add2(r+1,-C); }
I LL Query(int l,int r){ return (LL)Sum1(r)*(r+1)-Sum2(r)-(LL)Sum1(l-1)*l+Sum2(l-1); }
void Solve(int l,int r,int ql,int qr){
    if(ql>qr) return;
    if(l==r){
        for(int i=ql;i<=qr;++i) ans[id[i]]=l;
        return;
    }
    int mid=(l+r+1)/2,p1=0,p2=0;
    for(int i=ql,u;i<=qr;++i){
        u=id[i];
        if(q[u].op==1){
            if(q[u].val>=mid) Modify(q[u].l,q[u].r,1),t1[++p1]=u;
            else t2[++p2]=u;
        }
        if(q[u].op==2){
            LL x=Query(q[u].l,q[u].r);
            if(x>=q[u].val) t1[++p1]=u;
            else q[u].val-=x,t2[++p2]=u;
        }
    }
    for(int i=ql,u;i<=qr;++i){
        u=id[i];
        if(q[u].op==1&&q[u].val>=mid)
        Modify(q[u].l,q[u].r,-1);
    }
    for(int i=ql;i<=ql+p1-1;++i) id[i]=t1[i-ql+1];
    for(int i=ql+p1;i<=qr;++i) id[i]=t2[i-ql-p1+1];
    Solve(mid,r,ql,ql+p1-1); Solve(l,mid-1,ql+p1,qr);
}
int main(){
    n=In(); m=In();
    for(int i=1;i<=m;++i){
        id[i]=i; q[i].op=In(); q[i].l=In();
        q[i].r=In(); scanf("%lld",&q[i].val);
    }
    Solve(-n,n,1,m);
    for(int i=1;i<=m;++i) if(q[i].op==2) printf("%d\n",ans[i]);
    return 0;
}

转载于:https://www.cnblogs.com/pkh68/p/10526841.html

内容概要:本文主要介绍了一种基于Matlab实现的交叉小波和小波相干性分析方法,旨在帮助科研人员通过Matlab代码实现信号交叉小波和小波相干性(Matlab代码实现)的时频域联合分析。交叉小波可用于分析两个非平稳信号之间的局部相关性,而小波相干性则进一步揭示它们在不同频率和时间尺度上的相干程度,适用于气象、海洋、生物医学、电力系统等多领域的时间序列数据分析。文中提供了完整的Matlab代码示例,并结合实际应用场景展示其操作流程与结果可视化方式。; 适合人群:具备一定信号处理基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事时间序列分析、多变量信号相关性研究的相关领域工作者。; 使用场景及目标:①分析两个时间序列在时频域内的局部相关性和相位关系;②识别信号间的周期性耦合特征,如气候因子关联、脑电/心电信号交互、电力负荷与气象因素的关系等;③通过小波相干图直观展示变量间的动态关联强度与滞后关系,支撑科学决策与机理探究; 阅读建议:建议读者结合Matlab环境实际运行所提供的代码,理解小波变换、交叉小波与小波相干性的数学原理,并尝试将方法迁移至自身研究领域的数据集上进行验证与优化,同时注意参数设置(如小波基函数、边缘效应处理)对结果的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值