多项式开方学习笔记

多项式开方学习笔记

前言:

今天学习了多项式开方,和多项式求逆挺像的,总结一下。

问题:

给定一个多项式\(A(x)\),求出多项式\(B(x)\),使\(A(x) \equiv B(x)^2 \pmod{x^n}\)

解析:

考虑递推求解,假设我们已经求出\(B'(x)\),使

\[A(x) \equiv B'(x)^2 \pmod{x^{\lceil \frac{n}{2} \rceil}}\]

又:

\[A(x) \equiv B(x)^2 \pmod{x^n}\]

所以:

\[B(x)^2-B'(x)^2 \equiv 0 \pmod{x^{\lceil \frac{n}{2} \rceil}}\]

用平方差公式,有:

\[(B(x)+B'(x))(B(x)-B'(x)) \equiv 0 \pmod{x^{\lceil \frac{n}{2} \rceil}}\]

\[B(x)-B'(x) \equiv 0 \pmod{x^{\lceil \frac{n}{2} \rceil}}\]

将式子两边平方,有:

\[B(x)^2-2B(x)B'(x)+B'(x)^2 \equiv 0 \pmod{x^n}\]

那么我们就得到了递推式:

\[B(x) \equiv \frac{A(x)+B'(x)^2}{2B'(x)} \pmod{x^n}\]

多项式求逆即可。

最后当\(n=1\)时,求\(B'(x)\)的常数项用二次剩余即可,这个可以看我的博客

时间复杂度:

\[T(n)=T(n/2)+O(nlogn),T(n)=O(nlogn)\]

代码实现

这是洛谷模板的代码。


#include<bits/stdc++.h>
#define N 300005

using namespace std;

inline int In(){
    char c=getchar(); int x=0,ft=1;
    for(;c<'0'||c>'9';c=getchar()) if(c=='-') ft=-1;
    for(;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0';
    return x*ft;
}

const int P=998244353,g=3,inv_2=499122177;
int n,L,C,r[N],a[N],b[N],c[N],d[N],e[N];

inline int power(int x,int k){
    if(!x) return 0;
    int s=1,t=x;
    for(;k;k>>=1,t=1ll*t*t%P) if(k&1) s=1ll*s*t%P;
    return s;
}

inline void NTT_prepare(int x){
    L=1; C=0; while(L<=x) L<<=1,++C;
    for(int i=1;i<L;++i) r[i]=(r[i>>1]>>1)|((i&1)<<(C-1));
}

inline void NTT(int* A,int op){
    for(int i=0;i<L;++i) if(i<r[i]) swap(A[i],A[r[i]]);
    for(int i=1;i<L;i<<=1){
        int Wn=power(g,(P-1)/(i<<1));
        if(op==-1) Wn=power(Wn,P-2);
        for(int j=0;j<L;j+=(i<<1)){
            int w=1;
            for(int k=0;k<i;++k,w=1ll*w*Wn%P){
                int p=A[j+k],q=1ll*w*A[i+j+k]%P;
                A[j+k]=(p+q)%P; A[i+j+k]=((p-q)%P+P)%P;
            }
        }
    }
    if(op==-1){
        int inv_L=power(L,P-2);
        for(int i=0;i<L;++i)
        A[i]=1ll*inv_L*A[i]%P;
    }
}

void Sol_inv(int k,int* A,int* B,int* C){
    if(k==1){ B[0]=power(A[0],P-2); return; }
    Sol_inv((k+1)/2,A,B,C); NTT_prepare(k<<1);
    for(int i=0;i<k;++i) C[i]=A[i]; for(int i=k;i<L;++i) C[i]=0;
    NTT(B,1); NTT(C,1);
    for(int i=0;i<L;++i) B[i]=1ll*(2-1ll*B[i]*C[i]%P+P)%P*B[i]%P;
    NTT(B,-1); for(int i=k;i<L;++i) B[i]=0;
}

void Sol_sqrt(int k,int* A,int* B,int* C,int* D){
    if(k==1){ B[0]=1; return; }
    Sol_sqrt((k+1)/2,A,B,C,D); NTT_prepare(k<<1);
    for(int i=0;i<k;++i) C[i]=A[i]; for(int i=k;i<L;++i) C[i]=0;
    for(int i=0;i<L;++i) D[i]=0;
    Sol_inv(k,B,D,e);
    NTT(B,1); NTT(C,1); NTT(D,1);
    for(int i=0;i<L;++i) B[i]=1ll*(1ll*C[i]*D[i]%P+B[i])%P*inv_2%P;
    NTT(B,-1); for(int i=k;i<L;++i) B[i]=0;
}

int main(){
    n=In(); for(int i=0;i<n;++i) a[i]=In(); Sol_sqrt(n,a,b,c,d);
    for(int i=0;i<n;++i) printf("%d%c",b[i],(i==n-1)?'\n':' ');
    return 0;
}

转载于:https://www.cnblogs.com/pkh68/p/10645501.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值