1、为什么需要归一化?
比如分析一个人身高体重对健康的影响,身高的区间大约是1.5m~1.8m,体重40kg~100kg,显然体重的数值变化比较大,对结果的影响更大,那么为了得到更准确的结果,就需要使各指标处于同一个数值区间,以便进行分析,而归一化就是这样的一种方式。
2、归一化常用的方法有哪些?
1、线性归一化
2、零均值归一化
3、哪些模型需要归一化?
使用梯度下降法求解的模型通常需要归一化,比如线性回归、逻辑回归、支持向量机、神经网络。对于树模型,比如决策树,因进行节点分裂时主要依据信息增益比(与数据集标签有关),所以不考虑归一化。