特征归一化

1、为什么需要归一化?

      比如分析一个人身高体重对健康的影响,身高的区间大约是1.5m~1.8m,体重40kg~100kg,显然体重的数值变化比较大,对结果的影响更大,那么为了得到更准确的结果,就需要使各指标处于同一个数值区间,以便进行分析,而归一化就是这样的一种方式。

2、归一化常用的方法有哪些?

      1、线性归一化

                                                 

       2、零均值归一化

                                                   

3、哪些模型需要归一化?

      使用梯度下降法求解的模型通常需要归一化,比如线性回归、逻辑回归、支持向量机、神经网络。对于树模型,比如决策树,因进行节点分裂时主要依据信息增益比(与数据集标签有关),所以不考虑归一化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值