基于Python的新能源汽车销量分析与预测系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        基于Python的新能源汽车销量分析与预测系统是一个使用Python编程语言和Flask框架开发的系统。它可以帮助用户分析和预测新能源汽车的销量情况。该系统使用了关系数据库进行数据存储,并使用了一些前端技术如HTML、JavaScript、jQuery、Bootstrap和Echarts框架来实现用户界面的设计和交互。

        该系统的主要功能包括:

  1. 数据采集和清洗:通过网络爬虫采集新能源汽车销售数据,并对数据进行清洗、数据库存储,以便后续分析使用。
  2. 数据可视化:将清洗后的数据以图表的形式展示,如折线图、柱状图等,帮助用户直观地了解销量情况和趋势。
  3. 数据分析:通过统计学和机器学习算法对销售数据进行分析,提取关键特征和规律,帮助用户发现影响销量的因素。
  4. 销量预测:基于历史销售数据和分析结果,采用ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等预测模型对未来销量进行预测,帮助用户做出决策和制定销售策略。

        通过该系统,用户可以方便地进行新能源汽车销量分析和预测,从而更好地了解市场需求和制定销售策略。

基于Python的新能源汽车销量分析与预测系统

2.  新能源汽车销量数据采集

        本系统利用Python网络爬虫技术采集某汽车排行榜网站的历史月度销售数据:

ef factory_car_sell_count_spider():
    """
    新能源汽车销量
    """
    # ......
    # 查询数据库中最新数据的日期
    query_sql = "select year_month from car_info order by year_month desc limit 1"
    cursor.execute(query_sql)
    results = cursor.fetchall()

    if len(results) == 0:
        start_year_month = '201506'
    else:
        start_year_month = results[0][0]
    print("start_year_month:", start_year_month)

    base_url = 'https://xxx.xxxxx.com/ev-{}-{}-{}.html'

    # ......
    while start_year_month < cur_date:
        for page_i in range(1, 10):
            try:
                url = base_url.format(start_year_month, start_year_month, page_i)
                resp = requests.get(url, headers=headers)
                resp.encoding = 'utf8'
                soup = BeautifulSoup(resp.text, 'lxml')

                table = soup.select('table.xl-table-def')
                trs = table[0].find_all('tr')
                # 过滤表头
                for tr in trs[1:]:
                    tds = tr.find_all('td')
                    # 车型
                    car_name = tds[1].text.strip()
                    # 销量
                    # ......
                    factory = tds[3].text.strip()
                    # 售价
                    price = tds[4].text.strip()
                    car_info = (start_year_month, car_name, factory, sell_count, price)
                    print(car_info)
                    factory_month_sell_counts.append(car_info)
            except:
                break
            time.sleep(1)

        # 下个月份
        start_year_month = datetime.strptime(start_year_month, '%Y%m')
        start_year_month = start_year_month + relativedelta(months=1)
        start_year_month = start_year_month.strftime('%Y%m')

    # 采集的数据存储到数据库中
    # ......

3. 新能源汽车销量分析与预测系统

3.1 系统首页与注册登录

3.2 中国汽车总体销量走势分析

3.3 不同品牌汽车销量对比分析

3.4 基于机器学习回归算法的汽车销量分析

        分别利用ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等预测模型,对2015年~2023年所有新能源汽车月度销量数据就行建模训练,并预测最新下一个月度的销量:

@api_blueprint.route('/factory_month_year_sell_count_predict/<factory>/<algo>')
def factory_month_year_sell_count_predict(factory, algo):
    """
    汽车销量预测
    """
    tmp = factory_month_sell_counts[factory_month_sell_counts['厂商'] == factory]
    tmp = tmp.drop_duplicates(subset=['时间'], keep='first')
    year_months = tmp['时间'].values.tolist()
    sell_counts = tmp['销量'].values.tolist()

    # 销量预测算法
    predict_sell_count = 0
    if algo == "arima":
        predict_sell_count = arima_model_train_eval(sell_counts)
    elif algo == 'tree':
        predict_sell_count = decision_tree_predict(sell_counts)
    elif algo == 'ridge':
        predict_sell_count = ridge_predict(sell_counts)
    else:
        raise ValueError(algo + " not supported.")

    # 下一个月度
    next_year_month = datetime.strptime(year_months[-1], '%Y%m')
    next_year_month = next_year_month + relativedelta(months=1)
    next_year_month = next_year_month.strftime('%Y%m')

    year_months.append(next_year_month)
    # 转为 int 类型
    predict_sell_count = int(predict_sell_count)
    sell_counts.append(predict_sell_count)
    return jsonify({
        'x': year_months,
        'y1': sell_counts,
        'predict_sell_count': predict_sell_count
    })

        切换为柱状图可视化,红色为预测的下一个月度的销量: 

4. 总结

        本项目通过网络爬虫采集新能源汽车销售数据,并对数据进行清洗、数据库存储,以便后续分析使用。将清洗后的数据以图表的形式展示,如折线图、柱状图等,帮助用户直观地了解销量情况和趋势。通过统计学和机器学习算法对销售数据进行分析,提取关键特征和规律,帮助用户发现影响销量的因素。基于历史销售数据和分析结果,采用ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等预测模型对未来销量进行预测,帮助用户做出决策和制定销售策略。

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

【资源说明】 基于python+django的新能源电动汽车使用体验大数据分析系统源码+演示视频+报告论文.zip 第一章 绪论 1 1.1 研究背景 1 1.2 研究目标意义 1 1.2.1 研究目标 1 1.2.2 研究意义 1 1.3 论文组织结构 2 1.4 本章小结 2 第二章 相关技术研究以及开发工具 3 2.1 Pyhon语言介绍 3 2.2 Django框架介绍 3 2.3 PyCharm工具介绍 3 2.4 爬虫技术介绍 3 2.4.1 网络爬虫概念 4 2.4.2 聚焦网络爬虫原理及其过程 4 2.5 Sqlite数据库介绍 5 2.6 本章小结 5 第三章 系统分析 6 3.1 管理员需求分析 6 3.2 系统用例分析 6 3.3 数据流图 7 3.4 数据字典 8 3.5 本章小结 9 第四章 系统设计实现 10 4.1 系统总体框架设计 10 4.2 总体结构设计 11 4.3 数据库详细设计 12 4.3.1 数据库概念模型设计 12 4.3.2 数据库逻辑设计 14 4.4 登录功能设计实现 16 4.5 新能源电动汽车数据爬取功能 17 4.5.1 数据采集总览 17 4.5.2 网络爬虫headers设置功能实现 17 4.5.3 新能源电动汽车信息爬取功能实现 17 4.6 新能源电动汽车数据清洗功能 18 4.6.1 数据清洗总览 18 4.6.2 数据清洗结果 19 4.7 新能源电动汽车数据存储功能实现 20 4.8 新能源电动汽车用户体验数据分析 21 4.8.1 数据分析总览 21 4.8.2 新能源电动汽车信息查询功能设计实现 22 4.7.3 纯电续航里程价格分析功能设计实现 23 4.7.4 续航里程和最低价格分析功能设计实现 24 4.7.5 续航里程和最高价格分析功能设计实现 25 4.7.6 电动汽车补贴排行分析功能设计实现 26 4.7.7 各个价格区间车型数量分析功能设计实现 26 4.7.8 纯电续航里程车型数量分析功能设计实现 27 4.8 本章小结 28 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python极客之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值