Android音频焦点

什么是音频焦点?

音频焦点是 API 8 中引入的一个概念。它用于传达这样一个事实:用户一次只能专注于一个音频流,例如收听音乐或播客,但不能同时关注两者。在某些情况下,多个音频流可以同时播放,但只有一个是用户真正会听的(专注于),而另一个在后台播放。一个例子是,在播放音乐时,会播报行车路线,而音乐的音量会降低(又称为闪避)。

官方连接:https://developer.android.google.cn/reference/android/media/AudioFocusRequest?hl=en 在该文档解释了什么是音频焦点,也展示了一个播放有声读物的App如何处理音频焦点。

对于AudioAttributes中的setUsagesetContentType的含义,文档中也有对应说明:https://developer.android.google.cn/reference/android/media/AudioAttributes,在Builder中也有对应的使用示例:https://developer.android.google.cn/reference/android/media/AudioAttributes.Builder

AudioManager.requestAudioFocus()函数的作用:当一个应用程序请求音频焦点时,系统会通知其他正在播放音频的应用程序让出音频焦点。根据请求的类型和当前的音频焦点状态,其他应用程序可能会降低音量、暂停播放或完全停止播放音频。

对于focusGain参数:

  • AudioManager.AUDIOFOCUS_GAIN: 长时间获取焦点。
  • AudioManager.AUDIOFOCUS_GAIN_TRANSIENT: 短时间获取焦点。
  • AudioManager.AUDIOFOCUS_GAIN_TRANSIENT_MAY_DUCK: 短时间获取焦点,允许其他应用降低音量(ducking)。
  • AudioManager.AUDIOFOCUS_GAIN_TRANSIENT_EXCLUSIVE: 短时间获取独占焦点。

这些参数如何选择,比如我是一个音乐播放器,播放音乐的时间可能很长,所以应用用AUDIOFOCUS_GAIN,这样我一请求音频焦点,别的应用就会收到AUDIOFOCUS_LOSS的通知,它们应该要完全停止播放了。

如果是一个通话app,则应该AUDIOFOCUS_GAIN_TRANSIENT,这样通话应该在请求焦点后,播放器app就会收到AUDIOFOCUS_LOSS_TRANSIENT,此时播放器应该暂停,通话结束后,调用audioManager.abandonAudioFocusRequest(audioFocusRequest)来释放音频焦点,此时播放器app就会收到AUDIOFOCUS_GAIN,此时就可以恢复播放之间暂停的音乐了。

示例代码如下:

fun log(msg: String) {
    Log.i("AAAA", msg)
}

class MainActivity : AppCompatActivity() {

    private val binding by lazy { ActivityMainBinding.inflate(layoutInflater) }
    private val audioManager by lazy { getSystemService(Context.AUDIO_SERVICE) as AudioManager }

    // 创建音频焦点改变监听器
    private val audioFocusChangedListener = { focusChanged: Int ->
        when (focusChanged) {
            AudioManager.AUDIOFOCUS_GAIN -> log("获得焦点,此时可以恢复播放")
            AudioManager.AUDIOFOCUS_LOSS -> log("永久丢失焦点,如被其他播放器抢占,此时应该停止播放")
            AudioManager.AUDIOFOCUS_LOSS_TRANSIENT -> log("暂时丢失焦点,如来电,此时应该暂停播放")
            AudioManager.AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK -> log("暂时丢失焦点,但可以 duck,此时可以降低音量")
        }
    }

    // 创建音频属性
    private val audioAttributes: AudioAttributes = AudioAttributes.Builder()
        .setUsage(AudioAttributes.USAGE_VOICE_COMMUNICATION) // USAGE_VOICE_COMMUNICATION: 当用途为语音通信(例如电话或 VoIP)时使用的使用值。
        .setContentType(AudioAttributes.CONTENT_TYPE_SPEECH) // CONTENT_TYPE_SPEECH:当内容类型为语音时使用的内容类型值。
        .build()

    // 创建焦点请求对象
    private val audioFocusRequest: AudioFocusRequest = AudioFocusRequest
        .Builder(AudioManager.AUDIOFOCUS_GAIN_TRANSIENT)
        .setOnAudioFocusChangeListener(audioFocusChangedListener)
        .setAudioAttributes(audioAttributes)
        .build()

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(binding.root)
        binding.requestAudioFocus.setOnClickListener { requestAudioFocus() }
        binding.releaseAudioFocus.setOnClickListener { releaseAudioFocus() }
    }

    /** 请求音频焦点 */
    private fun requestAudioFocus() {
        // 请求音频焦点
        when (audioManager.requestAudioFocus(audioFocusRequest)) {
            AudioManager.AUDIOFOCUS_REQUEST_GRANTED -> log("请求焦点成功")
            AudioManager.AUDIOFOCUS_REQUEST_FAILED -> log("请求焦点失败")
            AudioManager.AUDIOFOCUS_REQUEST_DELAYED -> log("请求焦点失败,但一会可能会成功(通过监听器通知结果)")
        }
    }

    /** 释放音频焦点 */
    private fun releaseAudioFocus() {
        audioManager.abandonAudioFocusRequest(audioFocusRequest)
    }

}

注:上面音频焦点API使用的是新出的API,在API 26才出的,也有过时的API可用,但是不推荐。

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if name == 'main': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵,
最新发布
06-11
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

android_cai_niao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值