击上方关注 “终端研发部”
设为“星标”,和你一起掌握更多数据库知识
正好,我这边有一个从零我0到1的深度学习路线总结,学会了用于毕业设计,找工作完全不是问题!
基本概念
深度学习是人工智能领域的一个重要分支,它模仿人类神经系统的工作方式,使用大量数据训练神经网络,从而实现自动化的模式识别和决策。比传统的机器学习技术更加准确和有效。它可以用多种模型,算法和技术来构建深度学习模型,并利用计算机的处理能力来提高模型的准确性和性能
编程语言与开发工具
深度学习首选 Python,Python 已经成为深度学习主导性的编程语言。例如 开源框架PyTorch、TensorFlow 也都是基于 Python 的。Anaconda 作为 Python 的一个集成管理工具,它把 Python 相关数据计算与分析科学包都集成在了一起,省去了各个安装的麻烦,非常方便。
理论基础
神经网络的正向传播过程,激活函数的选择与比较,反向传播参数优化的过程
具体我也梳理了几点具体的核心理论知识点
浅层神经网络(NN)
深层神经网络(DNN)
优化神经网络:如何防止过拟合
优化神经网络:梯度优化
优化神经网络:网络初始化技巧与超参数调试
构建神经网络模型的实用建议
积累丰富的实战
深度学习需要你掌握每个理论知识后,更重要的是将理论用于实践。
例如,使用深度学习模型解决图像识别、语音识别等,或者参加 kaggle。通过实战,更能加深自己的理解,帮助自己更加熟练地掌握深度学习应用技巧。
这里一个不错的Github开源项目上一个韩国人写的高赞文档,里面的代码十分优雅,并且包含了一些比较经典的模型,非常值得好好读一读,跑一跑。
项目地址:https://github.com/yunjey/pytorch-tutorial
另外下面的这个项目也值得学习
项目地址:https://github.com/AMAI-GmbH/AI-Expert-Roadmap
深度学习框架
1、TensorFlow
TensorFlow 的官网地址:https://www.tensorflow.org/。
2、Caffe
3、MXNet
4、PyTorch
PyTorch 的官网:http://pytorch.org,配套的文档和教程十分完整和友好,推荐读者看一看。
5、Cognitive Toolkit(CNTK)
GitHub 的地址:https://github.com/Microsoft/CNTK。
6、Theano
官网地址:http://deeplearning.net/software/theano。
7、DL4J
官网地址:https://deeplearning4j.org/。
8、PaddlePaddle
官网地址:http://www.paddlepaddle.org/。
9、Lasagne
官网地址:https://lasagne.readthedocs.io/en/latest/index.html
10. DSSTNE
重点说一下MXNet
MXNet 同时也是一个支持大多数编程语言的框架,支持的编程语言包括 Python、R、C++、Julia 等。由于目前支持R语言的深度学习框架并不是很多,因此使用R语言的开发者通常会选择 MXNet。
在使用体验上,MXNet 性能非常好,运行速度快,对 GPU 的要求也不高。但它的缺点是上手难度比较大,对于深度学习的新手有一定的技术要求。
深度学习的路线脑图
机器学习算法书籍:
《统计学习方法》
《神经网络与深度学习》
《机器学习》
《python机器学习及实现》
《集体编程的智慧》
《PRML》
《神经网络与深度学习》
《流畅的Python》
《Python for Data Analysis》
《Tensorflow实战》
最后的建议
首先,你得深入学习 数学和计算机科学(包括实用部分,即编程),并阅读书籍和大量论文。给自己定定目标(大、小、长、短),这样学习会有一个方向,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,一段时间之后,可以尝试复制现有论文,一旦你已经能够重现,你就可以通过参加比赛或试图改进已发布的结果,这个时候你就已经找到人们深度学习的感觉了!
回复 【idea激活】即可获得idea的激活方式
回复 【Java】获取java相关的视频教程和资料
回复 【SpringCloud】获取SpringCloud相关多的学习资料
回复 【python】获取全套0基础Python知识手册
回复 【2020】获取2020java相关面试题教程
回复 【加群】即可加入终端研发部相关的技术交流群
阅读更多
用 Spring 的 BeanUtils 前,建议你先了解这几个坑!
在华为鸿蒙 OS 上尝鲜,我的第一个“hello world”,起飞!
一款vue编写的功能强大的swagger-ui,有点秀(附开源地址)
相信自己,没有做不到的,只有想不到的
在这里获得的不仅仅是技术!
喜欢就给个“在看”