思路
容易发现,一个原子被另一个原子释放的中子轰击过后,就会一直被这个原子释放的中子轰击直到结束为止,所以当原子 i i i 释放的中子在时刻 x x x 轰击了原子 j j j,那原子 j j j 所释放的总能量会增加 k − x + 1 k-x+1 k−x+1。
我们又观察到,一个原子每秒有可能被多个原子轰击,但对于每个原子最多只会释放出一个中子进行轰击,所以一个原子释放对另一个原子所释放的中子数量不会超过 1 1 1。
设 s i s_i si 为原子 i i i 开始被轰击时的时间, a n s i ans_i ansi 为原子 i i i 总共释放的能量。我们可以通过 bfs 来对 s i s_i si 进行赋值并累加原子所释放的能量。即当我们遍历到原子 u u u 可以撞击原子 v v v 时,如果 v v v 还没有被撞击过,则将 s v s_v sv 赋值为 s u + 1 s_u+1 su+1,将 a n s v ans_v ansv 赋值为 a v × ( k − s u ) a_v\times(k-s_u) av×(k−su),并将 v v v 加入队列中。进行完判断后,再将 a n s v ans_v ansv 加上原子 u u u 对原子 v v v 造成的贡献 k − s u k-s_u k−su。
不过, m m m 有可能大于 1 1 1,所以我们要化零为整,定义一个原子 0 0 0 连接 v i v_i vi,并且 a 0 = m , s 0 = 0 , a 0 , i = v i a_0=m,s_0=0,a_{0,i}=v_i a0=m,s0=0,a0,i=vi。
最后输出 a n s i ans_i ansi 即可。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=5e5+5,mod=998244353;
int n,a[N];
long long k,ans[N],s[N];
vector<int> g[N];
int main(){
scanf("%d%lld",&n,&k);
for(int i=0,x;i<=n;i++){
scanf("%d",&a[i]);
for(int j=0;j<a[i];j++){
scanf("%d",&x);
g[i].push_back(x);
}
}
queue<int> q;
q.push(0);
while(q.size()){
int f=q.front();
q.pop();
if(s[f]==k)
break;//如果s[f]==k,说明队列中的原子无法再释放中子,跳出循环
for(int i=0;i<a[f];i++){
int v=g[f][i];
if(!s[v])
ans[v]=1LL*a[v]*((k-s[f])%mod)%mod,s[v]=s[f]+1,q.push(v);
ans[v]+=k-s[f],ans[v]%=mod;//注意取模
}
}
for(int i=1;i<=n;i++)
printf("%lld ",ans[i]);
return 0;
}