1到2000之内的偶数可以表示成两个质数之和

/*
2015软件笔试题 证明哥德巴赫猜想中1到2000之内的偶数可以表示成两个质数之和
*/
#include "iostream"
#include "stdio.h"
#include "math.h"

using namespace std;

int isNumber(int p);

int main()
{
	int i;
	cout << "Please input an even number(1<n<2000): " <<endl;
	scanf("  %d", &i);
	if(i>=2 && i<=2000 && i%2==0)
	{
		for(int j=1; j!=(i/2+1); j++)
		{
			int k=i-j;
			int result1,result2;
			result1 = isNumber(j);
			result2 = isNumber(k);
			if(result1==2 && result2==2)
			{
				cout << "find it!!" <<endl;
				cout << i << " =" << j << " + " << k <<endl;
				return 0;
			}
		}
		cout << "can not find right even number" <<endl;
		return -1;
	}
	else
	{
		cout<<"Input ERR, please input right even number" <<endl;
		return -1;
	}
}

int isNumber(int p)
{
	int count=0;
	if(p==1)
	{
		count = 2;
		return count;	
	}
	else
	{
		for(int i=1; i!=p+1; i++)
		{
			if(p%i == 0)
			{
				++count;
				if(count > 2)
					return -1;
			}
			
		}
		return count;
	}
	
}

验证巴赫猜想是一个数学问题,它陈述的是每个大于2的偶数都可以表示两个素数之和。然而,这是一个复杂的数学问题,并非简单的C语言编程任务,因为涉及到大量的数论计算算法优化。要实现这一点,你需要编写一个程序,采用高效的搜索策略(如埃拉托斯特尼筛法)生素数列表,然后遍历这个列表寻找符合条件的组合。 下面是一个简化的示例,展示了如何用C语言生并检查一些小范围内的素数,但这并不直接用于验证巴赫猜想: ```c #include <stdio.h> // 判断是否为素数函数 int is_prime(int n) { if (n <= 1) return 0; for (int i = 2; i * i <= n; i++) { if (n % i == 0) return 0; } return 1; } // 查找给定偶数的素数因子之和 void find_sum_of_primes(int even_num) { int sum = 0, found = 0; for (int p = 2; p <= even_num / 2; p++) { // 只需要考虑小于半的数作为第一个素数 if (is_prime(p)) { if (is_prime(even_num - p)) { // 检查另一半是否也是素数 printf("%d + %d = %d\n", p, even_num - p, even_num); found = 1; break; } } } if (!found) { printf("无法找到这样的素数组合。\n"); } } int main() { int num_to_check = 40; // 验证的偶数 find_sum_of_primes(num_to_check); return 0; } ``` 请注意,这只是一个基本的实现,对于大的偶数或对性能有较高要求的情况,你可能需要更复杂的数据结构算法。同时,由于巴赫猜想至今未得到证明,也无法提供一个确定性的算法来解决这个问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值