- 博客(65)
- 资源 (1)
- 收藏
- 关注
原创 从GOPRO提取GPS信息(gpx,kmz)
gopro2gpx -s -vvv samples/文件名.MP4 文件名。会出来文件名的kmz和bin,从kmz结合视频,看gps是否正确。
2024-10-30 03:13:43 78
原创 Video Overlay on Map
java原来是8.0版本,需要特别找9以上,32bit的。第二步:在cmd的java页面,cd到jar程序的文件夹。进入界面,但是他不能读取我的视频。
2024-09-06 05:19:08 195
原创 处理表格(数字里有,代码不认为他是数字的情况)
需求,把每个月的cost相加,最后算出全年度cost,把每个Q的cost相加,q1+q2+q3+q4,得出q的总和。遇到问题,一开始算出来都是0,后面发现数字之间有千位分隔符,所以代码不认为他是数字,当他是object。3.月份里没有q,删除有q的列,并且把q1q2q3q4单独再找出来。4.表格的内容删除,并且让代码认为这些都是数字。2.找到所有表头里有cost的那一列。表格在CSV2024_actual。1.读取表格 pandas。
2024-01-17 12:08:46 457
原创 Data processing flow
2. 两个年份的表格contact,保证所有列数的标题相同,并且数量相同。1. 找出第一年的address,有lat和long,自动生成。3. 对两个表格做出统计,分别分析各项数据。
2023-09-28 09:30:37 145
原创 deeplabv2模型分割草地
目前有两个文件夹,test和result,其中test文件夹里有11个文件,如何在result里新建11个文件夹,并且全部用test文件夹的名字名字。deeplabv2模型是预训练的,直接用论文里的验证集数据,找到各项METRICS。
2023-08-12 04:26:16 277
原创 让两个文件夹里的图片名字一模一样
在ASCII码中,'1'的码值小于'2',所以'10'作为字符串排序会排在'2'之前。而我们希望的是按照数字大小顺序排序,但是os.listdir()读取的文件名默认都是字符串类型。解决方法就是在排序前,将字符串转换成数字,或者提取文件名中的数字部分进行转换,确保排序的键都是整数类型,才能避免这个问题。3. 在ASCII码顺序中,'1' < '2',所以字符串'10'会排在字符串'2'之前。4. 而我们期望是按数字大小排序,所以出现了字符串排序和数字排序不一致的问题。- 在排序前处理键,确保是整数类型。
2023-07-31 23:35:50 339
原创 从0开始跑源代码
但是其中有很多是标准库,不需要用Requirements安装,比如,os,re,copy,tqdm, scipy, pickle, numpy, random ,itertools。Keras2.4.0和TensorFlow 2.3.0单独安装,不用这两个格式。所以Requirements.txt应该改成。python环境要求的3.6,我写了3.8。step3 安装requirements。还有cv2是opencv,安装方式如下。包中的一个模块,安装方法如下。step1 下载代码到本地。
2023-07-20 12:06:16 75
原创 win10 安装 langchain-chatglm 遇到的问题
官网看起来安装很简单,网上教程也是,但实际上我耗费了两天时间,查阅了当前网络上所有可查阅的资料,重复「安装-配置-卸载」十几遍,总结出的安装方法。win10 安装 langchain-chatglm 避坑指南(2023年6月21日最新版本)_憶的博客-CSDN博客。requirements.txt里面的中文全部删除,报错的gradio等库,在源文件里用#标注跳过,再最后找个能装的装。pytorch的版本要找对,我之前装错了,后面找了cuda11.7版本的。学会对话,告诉他“如果有就列出,如果没有就说没有”
2023-07-19 23:54:41 289
原创 机器学习不能读取显卡
name:也可以缩写为 【-n】,【yourEnv】是新创建的虚拟环境的名字,创建完,可以装anaconda的目录下找到envs/yourEnv 目录。也可以指定为【python=3.6】,若未指定,默认为是装anaconda时python的版本.版权声明:本文为CSDN博主「joshuwang0810」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。我在vscode的cmd里激活我需要的环境,安装cuda11.3版本对应的TensorFlow2.6。
2023-07-08 06:37:57 988
原创 Deep Learning-PyTorch:Chapter2 Pretrained Networks
deep learning pytorch,chapter2
2023-06-23 02:41:17 852
原创 P28 批量归一化BatchNormalization
数学不是很懂, 不过那个简洁实现的方法还可以看一看。4. 在Fashion-MNIST数据集上训练网络。2. 创建一个batchNorm的图层。3. 在LeNet上的应用。
2022-09-06 10:39:27 149
原创 P27 含并行连结的网络 GoogLeNet / Inception V3
5.后面还有其他变种,比如最著名的InceptionV3-ResNet,还有我用的Xception。和3x3,5x5的卷积相比,Inception块有更少的参数个数和计算复杂度。2.最好的卷积层超参数是什么?GoogLeNet表示全部都要。#用Fashion-MNIST测试,把图片的高和宽变成了96。pycharm不能显示图片很遗憾。3.Inception块是核心。里面的数字不知道怎么来的(原话。4.有五段,五个stage。
2022-09-04 11:53:40 366
原创 Chapater11:Training Deep Neural Networks
【代码】Chapater11:Training Deep Neural Networks。
2022-08-25 12:58:18 109
原创 Chapter 10 :Introduction to Artificial Neural Networks with Keras
【代码】Chapter 10 :Introduction to Artificial Neural Networks with Keras。
2022-08-24 13:09:32 354
原创 Chapter4:Traing Model
4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()5)np.random.randn()的输入通常为整数,但是如果为浮点数,则会自动直接截断转换为整数。#np.random.rand通过本函数可以返回一个或一组服从标准正态分布的随机样本值。3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵;2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵;
2022-08-23 12:57:33 374
原创 Week3 Practice Quiz
再用leftjoin的语法,依次列出tracks.albumid,albums.albumid,albums.title,再用albumid连接album和tracks两张表。解析需要一个list包含Audioslave这位艺术家的价钱和专辑名字,艺术家的专辑名字来自表格artists的name,价钱来自tracks的unitprice。看上图得知,专辑的数量在albumid里来自表格albums,专辑艺术家的名字在表格artists的name里。用leftjoin合并,再计算数量。......
2022-07-19 13:47:54 497
原创 SQL WEEK2 ASSIGNMENT2解析
https://ucde-rey.s3.amazonaws.com/DSV1015/ChinookDatabaseSchema.pnghttps://ucde-rey.s3.amazonaws.com/DSV1015/ChinookDatabaseSchema.pngER-DIAGRAM如上图9. Show the number of orders placed by each customer (hint: this is found in the invoices table) and s
2022-07-10 05:49:29 175
原创 SQL WEEK2 Assignment
1. Find the distinct values for the extended step. The code has been started for you, but you will need to program the third line yourself before running the query.错误原因:没有看清楚题目,以为是找所有column的distinct,后面发现只要根据格式在最后加上FROM 什么table即可+---------------+| Exten
2022-07-07 13:04:28 3925
原创 SQL for Data Science Quiz Week1
Question 3Which of the following statements are true of Entity Relationship (ER) Diagrams?They show you the relationships between tables.They only represent entities in the diagram.They identify the Primary KeysThey are usually a representation of a busin
2022-06-26 12:38:13 284
原创 SQL for Data Science - Week 1 练习
Question 5What is the query below missing in order to execute?代码报错的原因是:Select -- 没懂为什么是这个The Column NamesA Comma From Question 3When using SQLite, what datatypes can you assign to a column when creating a new table? Select all that apply.RealNullIntege
2022-06-25 12:37:46 229
原创 用pandas合并两个csv表格并保存
df1 = pd.read_csv(r"D1.csv")df2 = pd.read_csv(r"D2.csv")# 现将表构成list,然后在作为concat的输入frames = [df1, df2]result = pd.concat(frames)print(result)result.to_csv(r'result.csv',index=True,header=True)我需要行的index和列的index,把index=True用concat函数直接拼接,和merge有.
2022-04-26 03:23:11 4484
原创 P26网络中的NiN
本质是NiN块,用1*1的卷积网络取代全连接层import torchfrom torch import nnfrom d2l import torch as d2l#显卡print(torch.cuda.device_count())print(torch.cuda.is_available())print(torch.backends.cudnn.is_available())print(torch.cuda_version)print(torch.backends.cudnn.
2022-04-19 05:11:34 119
原创 OSError: [WinError 127] 找不到指定的程序。 Error loading “C:\Anaconda3\envs\Machine_Learning\lib\site-package
OSError: [WinError 127] 找不到指定的程序。 Error loading "C:\Anaconda3\envs\Machine_Learning\lib\site-package解决办法来源:https://github.com/pytorch/pytorch/issues/35803#ref-pullrequest-688459681Thank you@skyline75489, Deleting caffe2_detectron_ops.dll worked f...
2022-04-18 10:37:03 10726
原创 P24 VGG网络
重点是VGG块import torchfrom torch import nnfrom d2l import torch as d2ldef vgg_block(num_convs, in_channels, out_channels): #创建VGG块 layers = [] for _ in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels,
2022-04-18 05:58:49 752
原创 P24 AlexNet深度卷积神经网络
论文参考沐深的读论文视频import torchfrom torch import nnfrom matplotlib import pyplot as pltfrom d2l import torch as d2l#根据教科书上AlexNet的结构来写net = nn.Sequential( nn.Conv2d(1,96,kernel_size=11,stride=4,padding=1),nn.ReLU(), #这里用的Fashion-MNIST所以输入通道是1,灰度
2022-04-16 04:06:39 769
原创 P23 LeNet经典神经网络模型
LeNet(LeNet-5) 由两个部分组成:卷积编码器和全连接层密集块import torchfrom matplotlib import pyplot as pltfrom torch import nnfrom d2l import torch as d2lclass Reshape(torch.nn.Module): #原始输入是32*32 def forward(self,x): return x.view(-1,1,28,28) #28*28的图.
2022-04-14 10:43:29 443
原创 P22 池化层
实现池化层的正向传播import torchfrom torch import nnfrom d2l import torch as d2ldef pool2d(X,pool_size,mode='max'): p_h,p_w = pool_size #定义池化层的高和宽 Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) #输入的高 - 池化层的高 + 1,没有padding没有stride,宽度
2022-04-13 12:37:57 291
原创 P21 卷积层里的多输入多输出通道
##实现多输入通道互相关运算import torchfrom d2l import torch as d2ldef corr2d_multi_in(X,K): #用corr2d这个函数,假设X和k都是3d的,把X和k打包zip起来 return sum(d2l.corr2d(x,k) for x,k in zip (X,K))##验证互相关运算的输出X = torch.tensor([[[0.0,1.0,2.0],[3.0,4.0,5.0],[6.0,7.0,8.0]],.
2022-04-12 07:56:28 236 1
原创 P20 卷积层里的填充和步幅
这次的重点就是公式#在所有侧边填充1个像素import torchfrom torch import nn#目前的输入是一个矩阵,不考虑通道和batch sizedef comp_conv2d(conv2d,X): X = X.reshape((1,1) + X.shape) #(1,1)分别代表纬度数=1 和batch size =1 Y = conv2d(X) return Y.reshape(Y.shape[2:])#返回的是一个四维的东西,.
2022-04-11 04:33:25 187
原创 P19 卷积层
import torchfrom torch import nnfrom d2l import torch as d2ldef corr2d(X,K): #计算二维互相关运算 h,w = K.shape #kernel核矩阵 K.shape里有h和w,表示行数和列数/高和宽 Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) #输出Y的高度:X.shape[0] - h + 1 输入的高h - kernel的高h +.
2022-04-09 23:44:55 410
原创 Chapter3 Classification(包括Precision/Recall)
一、MNIST用MNIST数据集做classificationfrom sklearn.datasets import fetch_openmlmnist = fetch_openml('mnist_784',version=1)mnist.keys()mnist keys的打印结果:dict_keys(['data', 'target', 'frame', 'categories', 'feature_names', 'target_names', 'DESCR', 'details
2022-04-09 04:23:49 1452
原创 在tensorflow的segmentation模型中打印精确度
使用history函数,这里results是我之前定义的输出的模型的变量,根据自己的模型改print(results.history.keys())'loss', 'auc', 'recall', 'tp', 'tn', 'fp', 'fn', 'accuracy', 'precision', 'iou', 'bin_accuracy',验证数据集的各种数据summary:'val_loss', 'val_auc', 'val_recall', 'val_tp', 'val_tn', 'v
2022-03-23 04:40:41 2206
原创 P15 实战:Kaggle房价预测
1.实现几个函数来方便下载数据(自己定义函数,下载并返回文件名)import需要的库 + 找到数据的位置import hashlibimport osimport tarfileimport zipfileimport requestsDATA_HUB = dict()DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'使用download函数下载数据集,将数据集存在本地(默认情况为.../data),并返回下载文
2022-03-22 10:19:56 3149
原创 P12 权重衰退
通过限制参数值的选择范围,来控制模型容量通过拉朗格日乘子来证明总之都是为了模型精确,数学原理不懂#weight decayimport torchfrom torch import nnfrom d2l import torch as d2ln_train, n_test, num_inputs, batch_size = 20, 100, 200, 5true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05 #0.01
2022-03-04 12:16:18 140
原创 P11 模型的选择+过拟合欠拟合
#模型选择 欠拟合 过拟合import mathimport numpy as npimport torchfrom torch import nnfrom d2l import torch as d2l#通过多项式拟合来交互地探索这些概念:用三阶多项式max_degree = 20 #特征为20,20-d的向量n_train,n_test = 100,100 #100个训练样本,100个测试样本true_w = np.zeros(max_degree)true_w[0:4] = .
2022-03-04 11:10:52 220
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人